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Abstract: In this paper, the Generalized Finite Difference Method (GFDM) is used for solving elliptic 
equation on irregular grids or irregular domains.This Method is applied to 3D Poisson's equation with 
Dirichlet boundary conditions on irregular grids in a cuboid. This method is also used for more general 
linear PDS's on 3D domains. The partial derivatives are approximated by using the least squares method 
and Taylor expansion. The results show the performance and efficiency of method. 
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INTRODUCTION 

 
 Numerical solution of Partial Differential Equations (PDE) on irregular grids is an important field in applied 
sciences and engineering. Solving PDE problems on irregular domains using finite difference formula is not a new 
approach, but in recent years it has been attracted special attention and it is generalized to irregular meshes. For 
instance Urena et al. [1] applied twenty seven node star and least squares method to solve PDE's. Benito et al. [2-4] 
have made interesting contributions to the development of this method. This latter applications are concerned 
solving parabolic equations. Urena et al. [1] used a twenty seven points star to solve advection-diffusion on irregular 
grids. In this paper the latter method is applied to solve three dimentional linear PDE's, in particular Poisson's 
equation on 3D irregular grids. The 2D Poisson's equation have been solved by a special method using finite 
differences on irregular meshes and irregular domains by Izadian et al. [5]. This paper is organized as follows. In 
section 2 a description of method is given. In section 3 the numerical results are presented. Finally, in section 4 the 
conclusion terminate the paper. 
 

DESCRIPTION OF THE METHOD 
 
Consider the following linear partial differential equation 
 
                      (2.1)  
 
subject to the following Dirichlet boundary condition 
 
                                                             (2.2) 
 
where  and are given functions of Suppose  is discretized by a set of discrete points i.e. 
 

 

suppose    
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 Accepting  is a given positive integer, then at each  corresponds a set  which is called 

star set, that contains  points adjacent to the point and itself. Then 

 

 
 

where  is the number of elements of  and is the number of elements of  In order to solve (2.1) and (2.2), it 

is desirable that the first and second order partial derivatives of  are approximated by the following formulae: 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

                                                                     (2.3) 
 

where  for  and  are the points of  The parameters λ, µ and  are the constant 

real parameters that can be determined by using the method of [1]. In particular this parameters satisfy the following 
relations: 
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                                                                   (2.4) 
 
 In fact these formulae are valid, because each formula of numerical differentiating must be satisfied for constant 
functions. For determining the above partial derivatives, the Taylor expansion of  in each point of star-set with 
center  
 

 

 
is applied. Next a linear least squares problem is constituted to determine the approximation of partial derivatives. 
For more details it is recommended to see [1]. In practice the parameters appeared in (2.3) are not computed 
directly, instead, the partial derivatives are calculated by solving the following symbolic system of linear equation of 
nine unknowns 
 
                                                                             (2.5)  

 
where  and  are given as follows 

 

 
where A ′ and 

 
 

 
 
 The linear system (2.5) is the normal equation of least squares problem used by Urena [1] with constants 
weights. In order to solve the problem (2.1) and (2.2), the following equation in internal mesh points are considered: 



World Appl. Sci. J., 21 (Special Issue of Applied Math): 95-100, 2013 

98 

 

 

 

 
                                                          (2.6) 
 

where ,  are the derivatives in point  By substituting the obtained approximation of partial 

derivatives in (2.6), a system of linear equation is constituted. The solution of this equation, that can be determined 
by one of the known iterative methods, is the desired approximate solution on mesh points. 
 

NUMERICAL EXPERIMENTS 
 
 In this section 3 examples of 3D linear partial differential equations of poisson type are given, the numerical 

results are compared with analytic solution. In the Tables,  is the approximate solution and error is  
 
Example: Consider the following Poisson's equation 
 

 
 
with the boundary condition 
 

 
 
Table 3.1: Some results for  

x y z   error 

0.00 0.33 0.23 0.2178 0 
0.33 0.66 0.33 0.6534 2  
0.66 1.00 0.33 1.5445 0 
1.00 0.334 1.00 2.1089 0 
0.00 0.66 0.66 0.8712 0 
0.33 0.66 0.33 0.6535 0 
0.66 1.00 0.33 1.5445 0 
1.00 0.00 0.66 1.4356 0 
0.00 1.00 1.00 2.0000 0 
1.00 1.00 0.00 2.0000 0 
 

Table 3.2: Some results for Ni 

x y z u* error 

0.0 1.0 0.3 1.09 -7.0  

0.1 0.9 0.4 0.98 1.2  

0.2 0.8 0.5 0.93 1.0  

0.3 0.1 0.6 0.46 -4.0  

0.4 0.6 0.6 0.88 -2.0  
0.5 1.0 0.7 1.74 -4.6  

0.6 0.4 0.9 1.33 -1.0  

0.7 0.3 0.9 1.39 1.0  

0.8 0.7 0.9 1.94 2.0  
0.9 0.2 1.0 1.82 0.0 
1.0 1.0 0.9 2.81 0.0 
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 The exact solution of problem is u = : This problem are solved for  and Nb Some results are given 

in Table 3.1 and 3.2. The maximum of absolute value of errors in mesh points is  and the cpu time is 7.52 

seconds (for the second case). 
 
Example: Consider the following linear partial differential equation 
 

 
 
with the boundary condition: 
 

 
 
 The exact solution of problem is u = : In this problem two cases are considered:  and . Some results 

are given in Table 3.3 and 3.4. The maximum of absolute value of errors in mesh points is  and cpu time is 7.9 

second (for second case). 
 
Example: Consider the following Poisson's partial differential equation 
 

 
,  

 
with the boundary condition 
 
Table 3.3: The some results for  

x y z u* error 

0.00 0.33 0.33 0.2178 0 

0.33 1.00 0.66 1.5440 2  
0.66 0.00 1.00 1.4356 0 

1.00 0.33 1.00 2.1089 0 
0.00 1.00 1.00 2.0000 0 

0.33 0.33 0.00 0.2178 0 

0.66 0.66 0.00 0.8712 0 
1.00 1.00 0.00 2.0000 0 

0.00 1.00 1.00 2.0000 0 

0.66 0.00 1.00 1.4356 0 

 

Table 3.4: Some results for Ni 

x y z u* error 

0.0 0.5 0.1 0.26 -2.100  

0.1 0.9 0.2 0.86 9.212  

0.2 0.3 0.3 0.22 -1.912  

0.3 0.2 0.4 0.29 -3.025  

0.4 0.0 0.7 0.65 -1.500  

0.5 1.0 0.7 1.74 -1.370  

0.6 0.4 0.8 1.16 -1.479  

0.7 0.8 0.8 1.77 1.250  

0.8 0.2 0.9 1.49 -1.005  

0.9 0.6 0.9 1.98 8.576  

1.0 1.0 0.9 2.81 0.000 
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Table 3.5: Some results for  

x y z u* Error 

0.00 0.00 0.00 1.0000 0.00 
0.33 0.66 0.33 0.5200 0.021 
0.66 0.00 1.00 0.2300 0.00 
0.00 0.66 0.66 0.4184 0.00 
0.33 0.33 0.00 0.8043 0.00 
0.66 1.00 0.33 0.2134 0.02 
0.30 0.66 0.66 0.4184 0.00 
0.66 0.00 1.00 0.2300 0.00 
1.00 0.33 1.00 0.1214 0.00 

 

Table 3.6: The some results for  

x y z u* Error 

0.0 0.0 0.1 0.9900 -2.00  

0.1 0.4 0.2 0.8105 1.046  

0.2 0.3 0.5 0.6838 1.178  

0.3 0.2 0.6 0.6126 9.024  

0.4 0.0 0.7 0.5220 3.300  

0.5 0.5 0.7 0.3715 6.676  

0.6 0.4 0.8 0.3134 3.976  

0.7 0.3 0.9 0.2253 1.296  

0.8 0.6 0.9 0.2253 2.180  

0.9 0.5 2.0 0.1000 8.576  

 

 
 
The exact solution of problem is given by   

 This problem is solved for  and Ni Some results are given in Table 3.5 and 3.6. The maximum of 
absolute value of errors in mesh points is  and cpu time is 7.8 seconds (for second case). 
 

CONCLUSION 
 
 In this paper, GFDM is applied to solve the linear partial differential equations of three independent variables 
and second order. Three test examples are examined. The numerical results are presented in section 3, which 
demonstrate efficiency of the proposed method. 
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