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Abstract: In this study, we extend the technique of Waziri et al. (2010a) via incorporating the two-step 
scheme in the framework of the diagonal Jacobian updating method to solve large-scale systems of 
nonlinear equations. In this approach we used points from two previous steps unlike one step approach in 
most Newton’s-like methods. The anticipation has been to improve the current Jacobian approximation into 
a diagonal matrix. Under mild assumptions local convergence of the proposed method is proved. The 
results of numerical tests are provided to demonstrate the distinctive qualities of this new approach in 
contrast with other available variants of Newton’s method. The method proposed in this paper has out 
performs some Newton-like methods in terms of computation cost and storage requirements.  
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INTRODUCTION 

 
Let us consider the problem of finding the solution of nonlinear Eq. 1: 
 

                                                                             

f1 (x1 , x2 , x 3 ,....., x n ) = 0

f1 (x1 , x2 , x3,...., x n ) = 0

M
fn (x1 , x2 , x3,...., x n ) = 0

 

(1) 

 
 The above system can be denoted by F(x) = 0, where F = (f1, f2,…,fn): Rn→Rnis assumed to satisfy the following 
assumptions: 
 
A1 = F is continuously differentiable in on open neighborhood E ⊂Rn 
A2 = There exists a solution x* of (1) in E such that F(x*) = 0 
A3 = The Jacobian F’(xk) is Lipchitz continuous at x*  
A4 = F’(x*) is nonsingular 
 
 The famous method for finding the solution of (1) is Newton’s method (Dennis, 1983). Newton’s method for 
solving nonlinear equations is a natural extension of Newton’s method for single equation and it is the source of 
numerous variant methods. This method generates an interactive sequence Xk from any initial point x0 in the 
neighborhood of solution x*, via Eq. 2: 
 

                                                                 
-1

k+1 k k kx  = x -(F'(x )) F(x )  k = 0, 1, 2.....,  (2) 
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where, F(xk) is the Jacobian matrix evaluated at xk. 
 
 When the Jacobian F(x*) is nonsingular at a solution of (1) the convergence is guaranteed and the rate is 
quadratic from any initial point x0 in the neighborhood of x* (Dennis, 1983; Jose et al., 2009): 
 

                                                                             
2

k+1 kx -x* h x -x*≤  (3) 

 
For some h. 
 There are numerous variants of Newton’s method for solving (1) for example, Quasi-Newton method, Fixed 
Newton’s method and Inexact Newton’s methods (Dennis, 1983). Quasi-Newton (QN) methods are among the most 
famous iterative methods for solving (1). The general QN procedure to solve the problem (1) is by calculating the 
Newton’s direction 

~
1

k kkd B F= − &  and set xk+1 = xk+dk at the Kth iteration, where Fk is the function evaluation at xk and 

Bk denote Jacobian approximation updated in each iteration. It is noteworthy to mention that, the most critical part 
of most Newton’s-like methods is on forming and storing a full Jacobian matrix(directly or indirectly) in each 
iteration and the floating points operations is O(n3). To cope with these well-known weaknesses, some diagonal 
variants of Newton method via single step approach have been suggested in (Waziri et al. 2010a; Leong et al., 2011; 
Waziri et al., 2010b; Waziri et al., 2010c; Waziri et al., 2011). Incorporating this strategy Waziri et al. (2010a) 
showed that their algorithm is significantly cheaper than Newton’s method and some of its variants. Apart from 
these achievements, they utilize a standard one-step two-point approach in Jacobian approximation, which is 
commonly used by Newton’s-like methods. In disparity, this study develops a new diagonal-type Newton’s method 
for solving large-scale systems of nonlinear equations by broadening the scheme of (Waziri et al. 2010a) whereas 
employs a two-step multi-point approach to increase the accuracy of Jacobian approximation into diagonal matrix. 
We organized the rest of this study as follows: In section 2, we present the proposed method, Section 3 presents 
Convergence analysis and Numerical results are reported in Section 4 and lastly Conclusion in Section 5. 
 

MATERIALS AND METHOD 
 
Two-step diagonal jacobian (2-DNM): In this section, we shall present our new variant of Newton’s method via 
two-step multi-point scheme. This new scheme generates a sequence of points {Xk}via Eq. 4: 
 

                                                                              
-1

k+1 k k kx  = x -M   F(x )  (4) 

 
where, Mk is a diagonal approximation of the Jacobian matrix. We need to constructa matrix Mk using diagonal 
updating approach which is a good approximation of the Jacobian. waziri et al. (2010) uses data from one preceding 
step to improve the current approximate Jacobian into diagonal matrix i.e., yk = F(xk+1)-F(xk) and sk = xk+1-xk, this 
scheme is known as one-step approach. Therefore, in order to make Mk to be a more accurate approximation of the 
Jacobian matrix, we make use of an interpolating curve in the variable-space to develop an incomplete Taylor series 
expansion of F at xk. This is accomplished by considering some of the most successful of two-step methods (Ford 
and Moghrabi, 1997; Ford and Moghrabi, 1994; Ford and Thrmlikit, 2003) for more details). By using this two-step 
approach we can present the improved incomplete Taylor series expansion of F(x) as follows Eq. 5: 
 

                                                                         k k k-1 k k k-1M (s - ks ) (y - y )λ ≈ λ  (5) 

By letting  

k k k-1 k k k k-1 = s - ks  and  = y - y ,ϖ λ ϑ λ  
then it follows from (5) that Eq. 6: 

                                                                                      k k kM ϖ ≈ ϑ  (6) 

 
 As we used information from the last two steps instead of one previous step in (5) and (6) we anticipate that the 
novel  incomplete  Taylor  series  expansion  of  F(x) derived  from  this  scheme,  will  also  improve the precision 
of  the  Jacobian approximation. To achieve this we require to build an interpolating quadratic curves x(∈) and y(∈), 
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whereby x(∈) interpolates the last two earlier iterates xk-1,  xk and xk+1 and y(∈) interpolates the last two earlier 
function evaluation Fk-1, Fk and Fk+1 (which are assumed to be available). By using the approach introduced by (Ford 
and Moghrabi, 1997), we can obtain the λk in (5) using the value of∈0,∈1 and ∈2. We assumed that ∈1 = 0 and 

2
j j{ }  = 0∈

 
then λk is given as follows Eq. 7-9: 

 

                                                                                 
( )

1 2 1

2 1 k

k+1 k k

k k

1
T 2
k k k

-  = -

= x( )-x( ) M

= x -x M

= s M

== s M s

∈ ∈ ∈

∈ ∈

 (7) 

And: 

                                                                                 
( ) ( )( )

0 2 0

2 0 k

k+1 k-1 k

k k 1 k

1
T 2

k k-1 k k k-1

-  = -

= x( )-x( ) M

= x -x M

= s s M

= s +s M s +s

−

∈ ∈ ∈

∈ ∈

+

 (8) 

Let us define ρ as: 

                                                                                        

2 0

1 0

∈ − ∈
ρ =

∈ − ∈
 (9) 

Then  ϖk and ϑk are given as: 

                                                                                

2

k k k 1s s
1 2 −

ρ
ϖ = −

+ ρ
 (10) 

 

                                                                                

2

k k k 1y y
1 2 −

ρ
ϑ = −

+ ρ
 (11) 

 
Using (10) and (11) in (6) and the fact that Mk ≈F’(xk) then we consider the following: 
 

                                                                                    

(i)
(i) k
k 1 (i)

k

m +

ϑ
=

ϖ
 (12) 

Therefore: 

                                                                                
(i)

k+1 k+1M  = diag (m )  (13) 

 
For i = 1, 2,…., n and k = 0, 1, 2,…, n. 
where, ( i )

kϑ is the ith component of the vector ϑk, (i)
kϖ  is the ith component of the vector ϖk and ( i )

k 1m + is the ith diagonal 

element of a diagonal matrix Mk+1 respectively. 
 To safeguard against the possibilities of small denominator (i)

kϖ .We utilize (13) only when (i)
kϖ >  10-4 for i = 1, 

2,…, if not set (i) (i)
k k 1m m −= . 

 The updating formula for this novel diagonal variant of Newton’s method is given as Eq. 14: 
 

                                                                               
-1

k+1 k k kx  = x -M F(x )  (14) 

 
Finally we present the first result of this study as follows: 
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Algorithm 2-DNM: 
 
Step 1: Choose an initial guess x0 and M0 = I, let k:= 0 
Step 2: Compute F(xk). If F(xk)≤ 10-4 stop 
Step 3: If k:= 0 define x1 = x0–M0

-1F(x0). Else if k:= 1 set ϖk = sk and ϑk = ykand goto 5 
Step 4: If k ≥ 2 compute ∈1,∈0 and ρ via (7)-(9), respectively and find ϖk and ϑk using (10) and (11), respectively. 

If T -4
k k k k10  2 2ϖ ϑ ≤ ϖ ϑ set ϖk = sk and ϑk = yk 

Step 5: Let xk+1 = xk-Mk
-1F(xk) and update Mk+1 as dene by (14) 

Step 6: Check if ϖk2 ≥∈1where ∈1 = 10-4, if yes retain Mk+1 that is computed by step 5. Else set, Mk+1 = Mk 
Step 7: Set k:=k+1 and goto 2 
 

CONVERGENCE RESULTS 
 
 In this section, we discuss the condition under which the diagonal updating formula derived in this study is 
linearly convergence to x*. To analyze the convergence of the method, we will make the following assumptions on 
nonlinear systems F. 
 
Assumption 3.1: 
 
• F is differentiable in an open convex set E in ℜn 
• There exists x* ∈E such that F(x*) = 0, F’(x) is continuous for all x. 
• F’(x) satisfies Lipschitz condition of order one i.e., there exists a positive constant µ such that Eq. 15: 
 

                                                                          
F'(x)-F'(y) x y≤µ −  (15) 

 
For all x, y ∈ℜn. 
There exists constants c1≤c2 such that c1ω2≤ωTF’(x)ω≤ c2ω2 for all x ∈E and ω∈ℜn. 
Then we have the following result: 
 
Theorem: Let F satisfies Assumption 3.1 and k|| || 0ϖ ≠ for some finite k and there exist positive constants  θ and δ such 

that Mk is bounded. Then the sequence{xk} k≥0 generated by Algorithm 2-DNM converges to x* linearly. 
 
Proof:Note that, it is diffculty to guarantee that (14) is always bounded. Due to the fact that,the scheme was derived 
from component-wise approximation approach. Nevertheless,we consider the situation where the updating matrix is 
bounded hence, the Taylor series of F(x) about (xk) is given as Eq. 16: 
 

                                                              
2

k k k kF(x) = F(x ) + F'(x )(x-x ) + O( x-x )  (16) 

When x = x*, (16) becomes: 

                                                           
2

k k k kF(x*) = F(x ) + F'(x )(x*-x ) + O( x*-x )  (17) 

But F(x*) = 0, then we have: 

                                                          
2

k k k k k-F(x ) = F(x ) = F'(x )(x*-x ) + O( x*-x )  (18) 

It follows that: 

                                                                      
1

k+1 k k kx - x* = x -x* -M  F(x )−  (19) 

Substituting (18) into (19), yields to: 

                                                   
( ) ( )1 2

k+1 k k k k kx - x* = x -x*+M  F(x ) x* x O x* x−  − + −   (20) 

It follows from (20) that: 

                                                  
( ) ( )1 2

k+1 k k k k kx - x* = x -x*-M F'(x ) x x * O x x * )− − + −
 

(21) 
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Neglecting the term with highest order, (21) turns into: 
 

                                                                     
( )1

k+1 k k kx - x* = x -x* A M F' x− −   (22) 

where, A is identity matrix. 
Taking the norm of both sides of (22), arrive at: 
 

                                                               
1

k+1 k k kx -x* x * A M F'(x )||||x x*||−≤ − −  (23) 

 
Suppose that Mk is bounded and the fact that Jacobian is bounded where δ = max[γ1,γ2], 
we have: 

                                                                      
( )k+1 kx -x* n x x *≤ −αδ −  (24) 

Then: 

                                                                              k+1x -x* xk x *≤ θ −  (25) 

 
 For some θ where θ = n −αδ . Therefore the sequence {xk}k≥0 generated by Algorithm 2-DNM converges to 
x* linearly. 
 

NUMERICAL RESULTS 
 
 This section illustrates some numerical outcomes on the test functions problems on our algorithm. Each problem 
is tested with dimensions ranging from 25-250,000. Weimplemented the methods (CN,FN,BM,2-DNM) using 
MATLAB 7:0. All the computational experiments were carried out in double precision computer, the termination 
state is considered to be Eq. 26: 
 

                                                                               
-4

k ks + F ( x ) 10≤  (26) 

 
 Based  on  comparison  indices  presented  in  (Bogle and Perkins, 1990), we reported on robustness, efficiency 
and combined robustness and efficiency of CN,FN,BM and 2-DNM methods respectively. If rij is the CPU time 
required  to  solve  the  problem  i  by  the  method  j,  rib = mink rij, i.e., the  best  result  for  problem i by any of 
tested methods, tj the number of successes by method j and n j the number of problems attempted by method j; then 
the robustness index is: 
 

j

j

t
Rj = 

n
 

The efficiency index is: 
m

ib
j

i=1;rij 0 ij

 r
Ej = /t

 r≠

 
  
 

∑  

 
And the combined robustness and efficiency index is: 
 

m
ib

j j j
i=1;rij 0 ij

 rE R  = /n
 r≠

 
×    

∑  

 
where, R is the percentage of cases in which each method found a solution. For E and E × R the best possible result 
is 1 and closer to one value of indices indicate a better result (Natasa and Zorna, 2001). 
We also force the routine to terminate whenever: 
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• The number of iteration is at least 500 but no point of xk satisfies (26) is obtained 
• CPU time in second reaches 500 
• Insufficient memory to initial the run 
 Represents a failure due to any of (i)-(iii) 
 
We then illustrate some details of the used test problems as follows: 
 
Problem 1: Trigonometric System of (Byeong et al., 2010): 
 

i if (x) = cos(x )-1 

 

i = 1, 2,…., nand x0 = (0.5, 0.5,…, 0.5)×
10
18

π
= (0.87, 0.87,…., 0.87). 

 
Problem 2: System of n nonlinear equations: (Waziri et al., 2012) 
 

T 2 -1 T 2 -1
i i

0

f (x) = ln(x ) cos((1-(1+(x  x) ) )) exp((1-(1+(x  x) ) ))

 i = 1, 2,...., n and x  = (2.5, 2.5,...., 2.5)
 

Problem 3: Trigonometric system: 
f1(x) = cos x1-9 + 3x1 + 8 exp x2 
fi(x) = cos xi-9 + 3xi + 8 exp xi-1 
i = 2,…., n-1 and (5, 5,…., 5) 

 
Problem 4: System of n nonlinear equations: 
 

( )

2
i i i i n-2 n-1 n

0

f (x) = (1-x  ) +x (1+x x x x )-2

i  1, 2, , n and x  2, 2, ., 2= … = …
 

 
Problem 5: System of n nonlinear equations: (Waziri et al., 2012) 
 

2 i i
i i 2

i i

0

cos(x -3)  x -2
f (x) = n(x -3) + -

2  exp(x -3) + log(x  + 1)

i = 1, 2,...., n and x = (-3, -3-3,...., -3)  
 

 
 

Fig. 1: Efficiency profile of CN, FN, BM and 2-DNM methods as the dimensions increases (in term of CPU time)
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Table 1: Performance profile of CN, FN BM and 2-DNM methods for n = 25 (in terms of CPU time in seconds)  

 CN FN BM 2-DNM 

R 0.7778 0.3333 0.7777 1.0000 
E 0.1219 0.0819 0.3554 1.0000 
E×R 0.0948 0.0273 0.2764 1.0000 
 

Table 2: Numerical results of CN, FN, BM and 2-DNM methods 

  CN  FN  BM  2-DNM 

  ---------------------------- --------------------------- --------------------------- ------------------------ 
Prob Dim NI CPU NI CPU NI CPU NI CPU 

1 25 7 0.062 236 0.047 12 0.005 25 0.001 
2 25 5 0.062 - - 7 0.016 6 0.015 
3 25 - - - - - - 14 0.031 
4 25 6 0.031 57 0.031 10 0.031 14 0.004 
5 25 13 0.190 - - - - 23 0.014 
1 100 7 0.872 356 0.168 12 0.018 27 0.019 
2 100 6 0.593 - - 7 0.312 6 0.031 
3 100 - - - - - - 14 0.036 
4 100 6 0.593 60 0.172 10 0.125 14 0.015 
5 100 14 1.232 - - - - 27 0.030 
1 300 7 2.082 444 7.098 13 0.033 27 0.018 
2 300 6 4.243 - - 7 0.593 6 0.031 
3 300 - - - - - - 14 0.037 
4 300 6 4.212 - - 10 0.905 14 0.031 
5 300 15 11.263 - - - - 30 0.062 
1 1000 7 101.471 - - 14 7.167 31 0.040 
2 1000 6 107.874 - - 7 8.736 6 0.031 
3 1000 - - - - - - 14 0.094 
4 1000 6 108.340 - - 10 14.398 14 0.031 
5 1000 17 280.830 - - - - 33 0.140 
1 250000 - - - - - - 38 4.892 
2 250000 - - - - - - 7 1.435 
3 250000 - - - - - - 14 2.293 
4 250000 - - - - - - 15 2.761 
5 250000 - - - - - - 45 11.623 
 

 
 

Fig. 2: Combined efficiency and robustness profile of CN, FN, BM and 2-DNM methods as the dimensions 
increases (in term of CPU time) 
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DISCUSSION 

 
 We summarize our numerical experiments in Table 1 and 2, by using number of iteration and CPU time required 
to solve the tested problems. As exp ected, the results imply that diagonal updating proposed in the study improves 
notably over the performance of CN, FN and BM methods, as having greatest efficiency, robustness and combined 
efficiency and robustness indices. This is not surprising that any method that required storage of full elements of 
Jacobean matrix, particularly when solving large-scale systems,CN, FN and BM methods are necessary inferior. 
 In addition, the method 2-DNM solves for n = 250,000 using a negligible number of storage locations as 
appose by CN, FN and BM methods, the fact that for n>3000 not all algorithms converge due to the "out-of-
memory" circumstances. Based on this, we claim that our methods have outperforms the Newton’s method, 
especially for handling large-scale systems . Moreover, we used Fig. 1 and 2 to detail the growth of the CN, 
FN, BM and 2-DNM method’s CPU time as the dimension increases, which shows that 2-DNM increases 
linearly while CN, FN, BM growths exponentially. 
 Finally according to these numerical results, we also remark that, the use of two-stepapproach to approximating 
the Jacobian into diagonal matrix is very effective and encouraging as it has the least CPU time, floating point 
operations and storage requiremints respectively. 
 

CONCLUSION 
 
 A novel approach on approximating the Jacobain matrix into diagonal form has been presented. The method 
uses two-previous points to build up the updating scheme, unlike the conventional single point method. We applied 
the new scheme to solve large scale system of nonlinear equations. 
 Numerical testing provides strong indication that the 2-DNM methods exhibits enhanced performance in all the 
tested problems (as measured by the CPU time, foating points operations and matrix storage requirement) by 
comparison with the other varaints of Newton’s methods, an attribute which becomes more obvious as the 
dimension of the problems increases. 
 Finally we claim that, the use of multi-points approach to approximate Newton’s step is capable of 
improving the efficiency and robustness of Newton’s method to an acceptable level, especially when the 
function derivatives are relatively expensive or the Jacobain is reasonably nearly singular or large-scale 
systems. 
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