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Optimal Homotopy Asymptotic Solution for Thin Film
Flow of a Third Grade Fluid with Partial Slip
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Abstract: The aim of this communication is to investigate thin film flow of an incompressible third grade fluid
on  an  inclined  plane  with  partial  slip.  The  governing equations of this flow are nonlinear and solved for
the  velocity  field  using  analytical  method,  name  the optimal homotopy asymptotic method (OHAM).
Results obtained by OHAM are compared with exact solution and a close agreement was found. Finally the
graphs are plotted to discuss the effect of different parameters.
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INTRODUCTION Most real world problems and phenomena occur

Most of the scientific, engineering and commercial industry and technology, number of numerical and
problems are generally described by non-Newtonian analytical techniques has been proposed by various
fluids. The governing equations of non-Newtonian fluids researchers [4-8]. But the complete understanding of a
are highly non-linear as compared to Newtonian fluids. non-linear problem is difficult because when numerical
Due to complexity of non-Newtonian fluids, it becomes results are plotted, they give discontinues points of a
difficult to suggest a single model which exhibits all curve. Similarly  the  analytical   methods   for  solving
properties of non-Newtonian fluids, therefore various non-linear problem have limitations at the same time they
empirical and semi empirical models have been proposed have their own advantages too.
[1-3]. Since there is a paucity of exact solution of non-linear

In the study of fluid dynamics, slip boundary problems, we may go for approximate analytic solutions.
conditions have great importance. It ranges from Many  asymptotic  techniques  are   used  for solving
technological applications to medical applications, non-linear problems. Keeping this fact in mind, we have
especially   in   polishing  artificial  heart  valves. applied a new powerful technique OHAM [10-17] which
Although  the no slip condition is widely used for flows is generalization of HPM and HAM. OHAM is simple,
of non-Newtonian fluids but it is inadequate in problems straightforward technique and does not require the
involving thin film flow, multiple interfaces and rarefied existence of any small or large parameter as does
fluid flows etc. In the literature, much attention is given to traditional perturbation. OHAM has successfully applied
slip effect, especially from polymer industry, when to a number of nonlinear problems arising in the science
polymer melts flow under the application of pressure and engineering by various researchers. This proves the
gradient which exhibits a macroscopic wall slip [4-8]. validity and acceptability of OHAM as a useful technique.

The purpose of present attempt is to analyze the slip Here, it is important to mention that the previous
effect on the thin film flow of a third grade fluid down an results  of  Siddiqui  et  al.  [9]  can   easily  be recovered
inclined plane. The problem was first studied by Siddiqui by  substituting   the   slip   parameter    equal   to  zero.
et al [9] in which they studied third grade flow over an By substituting the slip parameter equal to zero, graph is
inclined plane. But no attention has been paid on plotted to visualize the comparison between the exact [18]
exploring the slip effects on the thin film flow of a third and OHAM solution. This comparison proves the
grade fluid down an inclined plane. confidence and reliability of OHAM.

nonlinearly. In view of their potential applications in
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The distribution of this paper is in six sections. Now substituting Eq. (2.6) in Eq. (2.2) and equating
Section  2 contains the basic idea of OHAM and in the coefficients of like powers of p, we obtain the
Section   3,   we   formulate  the  problem  of  thin  film governing equation of u (x), given by Eq. (2.4) and the
flow  down  an  inclined plane with slip conditions. governing equation of u (x) i.e.
OHAM solution is obtained in Section 4. Discussion on
results and concluding remarks are given in next two (2.7)
sections.

Basic Formulation of OHAM: We apply the OHAM to
the following differential equation:

(2.1) (2.8)

Where L is a linear operator, u(x)is known function and
g(x) is known function, N(u(x)) is a non-linear operator
and B is boundary operator.

By means of OHAM one first constructs a family of where N (u (x),u (x),...,u (x)) is the coefficient of p ,
equation [10]; obtained by expanding N(u(x; p,c )) in series with respect

(2.2)

where p  [0, 1] is an embedding  parameter,  H(p) is a
non-zero auxiliary function for p  0 and H(0) = 0, u(x, p)
is  an  unknown  function.  Obviously,  when  p  =  0 and
p = 1 it holds

u(x,0) = u (x), u(x,1) = u(x) (2.3)0

respectively. Thus as p increases from 0 to 1, the solution
u(x,p) varies from u (x) to the function u(x), where u (x) is0 0

obtained from Eq. (2.1) for p = 0:

(2.4)

We choose auxiliary function H(p) in the form

(2.5)

Where c ,c ,... are constants, which can be determined1 2

later. Let us consider the solution of Eq. (2.2) in the form

(2.6)

0

k

m 0 1 m
m

i

to the embedding parameter p:

(2.9)

where u(x; p, c ) is given by Eq. (2.6).i

It should be emphasized that  u   for  k 0 arek

governed by the linear Eqs. (2.4), (2.7) & (2.8) with the
linear   boundary    conditions    that     come   from
original   problem,    which    can    be     easily   solved.
The  convergence  of the series Eq. (2.6) depends upon
the  auxiliary constants c ,c ... if it isconvergent at p=1,1 2

one has

(2.10)

Generally speaking, the solution of Eq. (2.1) can be
determined approximately in the form:

(2.11)

Substituting Eq. (2.11) into Eq. (2.1) it results the
following residual

(2.12)
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If R(x,c ) = 0 then u (x, c ) happens to be the exacti i
m

solution. Generally such case will not arise for nonlinear
problems, but we can minimize the functional

(2.13)

Where a and b are two values, depending on the
given problem. The unknown constants c (i = 1,2,...,m)i

can be optimally identified from the conditions

(2.14)

With these known constants, the approximate
solution (of order m) Eq. (2.11) is well determined. The
constants c  can be determined in another forms, fori

example, if k  (a, b), i = 1,2...,m and substituting k  intoi

Eq. (2.12), we obtain the equation

(2.15)

Formulation of Problem: The governing equations of
third grade uni-directional thin film flow down an inclined
plane of inclination  0 consisting of incompressibility
condition are

.V = 0 (3.1)

(3.2)

where  is fluid density, V is velocityvelocity, p is
pressure, B is body force, T is Cauchy stress tensor and 

denoting the material time derivative. The Cauchy stress
tensor in a third grade fluid is given by Eq. (3.4) is slip condition, where  is coefficient of slip

out the non-dimensional analysis, we define the following

where I is the identity tensor, µ is coefficient of viscosity
and a (i = 1,2) are material coefficients. The kinematicali

tensors A (k = 1,2,3) are Rivlin-Ericksen tensors and S is (3.6)k

extra stress tensor. The RivlinEricksen tensor A (k = 1,2,3)k

and extra stress tensor S for third grade fluid is given by Using Eq. (3.6) in Eqs. (3.3)-(3.5), we get

where A  = I, A  = L + L ,0 1
T

L = V

where  is the gradient operator and  is the material

time derivative defined by

For simplicity, some assumptions are made
The ambient air is stationary
Surface tension is negligible 
Thin film is of uniform thickness 
Thermal effects are negligible
Pressure gradient is absent.

We have a velocity field of the form V  =  (u(y),0,0).
By using the above assumptions and substituting the
values of V and T in Eqs. (3.1) and (3.2), we get the
following non-linear second order differential equation

(3.3)

The boundary conditions on u are

(3.4)

(3.5)

and Eq. (3.5) comes from  = 0 and y = . In order to carryyx

variables

(3.7)
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Comparison of Eq. (3.8) and (3.11) yields
(3.8)

Solution by OHAM: OHAM formulation of our problem as
(3.9) presented in Section 2 is

For simplicity, we drop asterisks. Integrating Eq. (3.7) (4.1)
once, we get

(4.2)
(3.10)

at y = 0, Eq. (3.10) reads as with boundary conditions

(4.4)

(3.11) which satisfies

(3.12)

g(y) = 0 (4.3)

(4.5)

With boundary conditions

By equating the coefficients of like powers of p, we get a series of problems.
The zeroth order problems defined as

(4.6)

which has solution

(4.7)

The first order problem is defined as
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which has the solution

(4.9)

The second order problem is defined 

(4.10)

which has the solution

(4.11)

By substituting the zeroth, first and second order
solution in Eq. (2.11), we get second order approximate
analytic solution of our problem. For the constants c ,c1 2

we use least square method as described in Section 2.
Hence

Using c ,c  in Eq. (2.11), we have the approximate1 2

solution of the problem.

RESULTS AND DISCUSSION

Figure 1-3 exhibits the effect of parameters m, , of parameters  = 1.0,  = 0.1  = 0.2, µ = 0.2 and
velocity field. In Figure 1, velocity function u(y) is plotted different values of the parameter 
against y for different values of m. Clearly, increasing
values of m cause to increase in the velocity. This is by increasing the angle of  inclination  of  inclined  plane,
because the reason that increasing value of m correspond the velocity increases. In Figure 2, graph is plotted
to the increasing angle of  inclination,  which  shows  that against  different values of slip parameter , as the values

Fig. 1: Dimensionless velocity profiles with fixed values



.0.3,7.2,3.2=m

.8.0,65.0,5.0=
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Fig. 2: Dimensionless velocity profiles with fixed values also  causes  the velocity to decrease. It is explicitly
of parameters m = 1.0,  = 0.1 µ = 0.2,  = 1 and shown  that  an  agreement between the  derived
different values of the parameter  = 0.1,0.2,0.4 . solutions  and exact solution is excellent. This confirms

Fig. 3: Dimensionless velocity profiles with fixed values 38: 506-515.
of parameters m = 2.0, µ = 0.2,  = 1,  = 1 and 3. Siddiqui, A.M., T. Haroon and S. Irum, 2009.
different values of the parameter Torsional flow of third grade fluid using modified

Fig. 4: Comparison of velocity profiles of exact and 7. Islam, S., Z. Bano, I. Siddique and A.M. Siddiqui,
approximate solution using OHAM 2011. The optimal solution for the flow of a fourth

of  increases the velocity decreases. Figure 3 is plotted 61(6): 1507-1516.
for different values of non-Newtonian parameter , we see 8. Sajid, M., R.  Mahmood   and    T.   Hayat,  2008.
that with increase in , the velocity increases in this Finite element solution for flow of a third grade fluid
region and as a consequence, the velocity gradient also past a horizontal porous plate with partial slip,
increases, due to which skin friction also increases. Comput. Math. Appl., 56: 1236-1244.

In Figure 4, a  comparisons  is  presented  for the
exact  solution  obtained  in  [15]  for   third   grade fluid
and   solution   obtained    by    OHAM  by setting  = 0.
It is   found   that   the   solution   obtained  by OHAM
has  an excellent agreement with exact solution.

Concluding   Remarks:     A     thin    film    flow   of a
non-Newtonian   third  grade  fluid  over  an  inclined
plane   with   partial   slip    has    been  studied
analytically.  The  effect  of   non-Newtonian  parameter
is  to  increase the flow velocity and hence the skin
friction  at  the  plate.  An   increase   in   slip parameter

our belief that the efficiency of the OHAM gives it much
wider applicability.
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