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The Homotopy Analysis Method for 
Solving the Kuramoto-Tsuzuki Equation

Y. Mahmoudi and M. Kazemian Esfanjani 

Department of Mathematics, Tabriz branch, Islamic Azad University, Tabriz, Iran

Abstract: The homotopy analysis method (HAM) is used to find a family of solitary solutions of the
homogenous Kuramoto-Tsuzuki equation. This approximate solution, which is obtained as a series of
exponentials has a reasonable residual error. An example is given and the numerical results are compared with
those of finite difference scheme and exact solution which the comparison shows the accuracy of the HAM
method. The HAM contains the auxiliary parameter , which provides us with a simple way to adjust and
control the convergence region of solution series.
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INTRODUCTION (3)

The Kuramoto-Tsuzuki equation describes the
behavior of many two-component systems in a where c  and c  are two real constants, (x,t) is an
neighborhood of    the    bifurcation    point   [1]. unknown complex function and (x) is a given complex
Reaction-diffusion type equations  have  been  applied  in function.
the study of broad class of nonlinear  processes, In 1992, Liao employed the basic ideas of the
including   a    well-known    synergetic    model   [1-13]. homotopy in topology to propose a general analytic
The problem of constructing and validating difference method for nonlinear problems, namely homotopy
schemes for these classes of problems has been in detail analysis method (HAM) [10, 11] and then modified it, step
taken up  in  [8, 9]. A finite  element  Galerkin  method had by step [4, 7, 12]. This method has been successfully
been discussed in [15, 16]. Tsertsvadze studied in [16] the applied to solve many types of nonlinear problems by
convergence of difference schemes for the Kuramoto- others [3, 5, 6, 18-21]. This method doesn't depend upon
Tsuzuki equation and for systems of reaction-diffusion any small or large parameters and is valid for most
type. In this paper, we consider the homogenous nonlinear models. In this article, we shall apply HAM to
Kuramoto-Tsuzuki equation [17]. find the approximate analytical  solution  of  the

solution. The remainder of this paper is arranged as

(1) homotopy analysis method. In section 3, we give one

with the initial condition convenience of the HAM.

(2) Homotopy Analysis Method: To describe the basic ideas

and homogeneous boundry conditions equation:

1 2

Kuramoto-Tsuzuki equation and compare it with the exact

follows: In section 2, we give a brief description for the

numerical example to assess the efficiency and

of the HAM, we consider the following differential
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N[ (x,t)] = 0 (4) (11)

where N is a nonlinear operator, (x, t) is an unknown Differentiating Eq. (5) m times with respect to the
function and x and t denote spatial and temporal embedding parameter p and then setting p = 0 and finally
independent variables, respectively. dividing them by m!, we have the so-called m th-order

By means of generalizing the traditional concept of deformation equation, 
homotopy [12] we constructs the so-called zero-order
deformation equation (12)

(5) where

where p [0, 1] is an embedding parameter,  is a nonzero
auxiliary parameter, L  is  an  auxiliary  linear  operator, (13)

(x, t) is an initial guess of (x, t) and (x, t; p) is an0

unknown function. It should be emphasized that one has and
great freedom to choose the initial guess, the auxiliary
linear operator, the auxiliary parameter  in HAM.
Obviously, when p = 0 and p = 1, it holds (14)

(6) It should be emphasized that (x,t) for m 1 is

respectively. Thus, as p increases from 0 to 1, the solution boundary conditions that come from the original problem,
(x, t; p) varies from the initial guess (x, t) to the which can be easily solved by symbolic computation0

solution (x, t). Expanding (x, t; p) in Taylor series with software such as Maple and Mathematica.0

respect to p, one has
Numerical Result: In this section, we present an example

(7) of Kuramoto-Tsuzuki equation. We compare the results

where Package to calculate the numerical solutions obtained by

Consider the homogenous equation ([17]) 
(8)

If the auxiliary linear operator, the initial guess, the (15)
auxiliary parameter  and the auxiliary function are so
properly chosen, then, as proved by Liao [12], the series with the initial condition
(7) converges at p = 1 and one has

(16)
(9)

which most be one of solutions of the original nonlinear
equation, as proved by Liao. As  = – 1, Eq. (5) becomes

(10)

which is used in the homotopy perturbation method [6]. difference method for solving Eq. (15) with the condition
According to the definition (8), the governing (16). The finite difference method has long computations.

equation can be deduced from the zero-order deformation Also the consistent and stability of the proposed
equation (5). Let us define the vector formulas is not easy.

m

governed by the linear equation (12) with the linear

with the exact solution. In our work, we use the Maple

this method.

whose exact solution is 

(17)

In [17], the authors have been used the finite
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To solve Eq. (15) by means HAM, we choose the initial approximation

(18)

Eq. (15) suggests the nonlinear operator as

(19)
and the linear operator

(20)

with the property

L(c ) = 0,1

where c  is the integration constant.1

Using the above definition, we construct the zeroth-order deformation equation

(21)

Obviously, when p = 0 and p = 1,

Therefore, as the embedding parameter p increases from 0 to 1, (x, t; p) varies from the initial guess (x, t) to the0

solution (x, t). Then, we obtain the m th-order deformation equation

(22)

subject to initial condition

where

(23)

Now, the solution of the m th-order deformation equation (22) for m 1 becomes

(24)

From (18) and (24) we now successively obtain
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and so on. Therefore, we use five terms in evaluating the approximate solution 

(25)

Then,

(26)

Table 1:  for different values of  and n

n=5 n=10 n=15
-2 2.4158E+00 2.4889E+01 1.8907E+02
-1.9 9.9171E-01 3.9190E+00 1.1187E+01
-1.8 3.7327E-01 5.1009E-01 4.9111E-01
-1.7 1.2643E-01 5.2509E-02 1.4893E-02
-1.6 3.7565E-02 4.0187E-03 2.8201E-04
-1.5 9.4476E-03 2.0892E-04 2.8716E-06
-1.4 1.9087E-03 6.4168E-06 1.2423E-08
-1.3 2.8596E-04 9.2262E-08 1.5231E-11
-1.2 2.8033E-05 4.0344E-10 2.4013E-15
-1.1 1.5374E-06 2.1630E-13 1.3589E-20
-1 1.0529E-07 1.9509E-17 2.1890E-21
-0.9 4.4141E-07 2.6241E-14 1.3762E-20
-0.8 4.5664E-06 2.0407E-11 4.8572E-17
-0.7 3.3134E-05 2.6262E-09 1.4292E-13
-0.6 1.7573E-04 1.1905E-07 6.4287E-11
-0.5 7.4415E-04 2.7712E-06 9.1254E-09
-0.4 2.7179E-03 4.0797E-05 5.9433E-07
-0.3 9.0506E-03 4.3776E-04 2.2182E-05
-0.2 2.8161E-02 3.8693E-03 5.6380E-04
-0.1 8.2095E-02 3.0728E-02 1.1720E-02
0 2.2371E-01 2.2371E-01 2.2371E-01

Table 2: The absolute error given by HAM for  = – 1 at x = 1.
n/t 1 2 3 4 5i

10 2.16322E-08 4.39168E-05 3.74434E-03 8.69144E-02 9.86945E-01
15 4.13279E-14 2.69606E-09 1.75748E-06 1.73518E-04 6.08307E-03
20 1.69347E-20 3.54146E-14 1.75820E-10 7.34446E-08 7.89733E-06
25 2.14716E-27 1.43743E-19 5.42732E-15 9.57368E-12 3.14991E-09

Table 3: ||e ||  computed by the finite difference scheme at t = 5 (h andN

are mesh lengths)
h  = / ||e ||2 N

/10 0.1000 1.0132 2.9852E-03
/20 0.0500 2.0264 7.5220E-04
/40 0.0250 4.0528 1.8854E-04
/80 0.0125 8.1057 4.7182E-05

To investigate the influence of  on the solution
series, we plot the so-called -curve (0, 0) obtained fromt

the 4 th-order, 5 th-order and 6 th-order HAM
approximation solution as shown in Figure 1. According
to this -curve, it is easy to discover the valid  region  of
 which corresponds to the line segment nearly parallel to

the horizontal axis. From Figure 1 it is clear that the series
of (0, 0) is convergent when –1.6< <–0.2.  hcur 3tae.t

The -curve of (0, 0) given by the 4th-order, 5th-ordert

and 6th-order HAM approximate solution. Table 1 shows
|| – ||  for x  [0,1] and t  [0,1]. This table whichexact ap 2

2

was computed for n = 5,10 and 15, shows that the valid
region of  is [–1.6, –0.2], as we have obtained  from
Figure 1 early. Also Table 1 shows that the best choice is
 = – 1. Figure 2 shows the behavior of the absolute error

for 5th-order HAM with  = – 1.
In Table 2, we have computed the absolute error for

some values of t at x = 1. It is resulted from Figure 2 that
the   absolute   error   does  not  vary  for  fixed  values  of



World Appl. Sci. J., 21 (12): 1776-1781, 2013

1780

Fig. 1: The -curve of (0, 0) given by the 4th-order, 5th- 5. Hayat, T., M. Khan and M. Ayub, 2005. On non-t

order and 6th-order HAM approximate solution. linear flows with slip boundary condition, Z. Angev.

Fig. 2: The behavior of the absolute error for 5th-order method techniques for the solution of nonlinear
HAM with  = – 1. problems, Ph.D. Thesis, Shanghai Jiao Tong

t.  Table  3,  shows  the  second-order   convergence in 11. Liao, S.J., 2003. Beyond Perturbation: Introduction to
L -norm of the finite difference scheme for solving the Homotopy Analysis Method, Chapman and
periodic boundary-initial value problem (15)-(17) [19]. Hall/CRC Press, Boca Raton.
Comparing the results in Table 2 and Table 3 shows that 12. Liao, S.J., 2004. On the homotopy  analysis  method
HAM produces more accurate results with respect to for  nonlinear   problems,   Appl.   Math.  Comput.,
finite differences scheme. 147: 499-513.

CONCLUSIONS Nonequilibrium Systems. Mir, Moscow, (in Russian).

In this paper, HAM has successfully developed for finite element Galerkin methods for nonlinear
solving Kuramoto-Tsuzuki equation. It is obvious to see evolution  equations.  J.  Appl. Math. Comput.,
that the HAM is very powerful and efficient technique in 26(12): 247-262.
finding analytical solutions for wide classes of nonlinear 15. Omrani, K., 2005. Convergence of Galerkin
problems. HAM provides accurate numerical solution for approximations   for  the  Kuramoto-Tsuzuki
Kuramoto-Tsuzuki equation in comparison with finite equation.  Numer.  Methods  Partial Differ. Equ.,
difference scheme. 21(5): 961-975.
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