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Predicting the Excursion Set of Gaussian Random Field
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Abstract: The statistics of the excursion set of random fields are common measures of reliability for many
engineering systems. Predicting the excursion set of a random field and its statistics are the topics of this
paper. A method for predicting the excursion set of a smooth and stationary Gaussian random field is

discussed.
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INTRODUCTION

Understanding various engineering properties of
the soil is the goal of many geotechnical problems [2].
This includes the intrinsic soil properties, the shear
strength, the soil type and the level of contamination in
the soil. Crude oil contamination in the soil is one of the
factors that affects the shear strength and we are
interested n determining the statistical measures for
this soil property in a given region. If we observe the
soil property in a given region C, then we may want to
predict the soil property in another region D [3]. These
properties are unknown and may be modeled by a set of
random variables. Since these quantities vary spatially,
they may be modeled by a random function or random
field. A random field is simply a collection of random
variables indexed by a spatial set. The main interest of
the researchers is to determine the probability
distribution of the soil properties in a region of interest.
For example, we may be interested in determining the
probability that a soil property exceeds some given
threshold u in a region of interest, or the proportion of
the space where the soil property exceeds u [5, 7]
These statistical properties are used as measures of
reliability for the soil used in the structures. The aim of
this paper is to predict the excursion set and some of its
characteristics of a smooth and stationary Gaussian
random field in a given region of interest based on a
realization of the field on a region.

To setup the notation assume that the region of
interest is C—RY, the d-dimensional Euclidean space. A
family of random variables{X(t), tc Cc RY}, d=1, is
called a d-dimensional random field. If d = 1, the
family is called a random process. For every random

field X(t), two functions can be defined, the mean
function u(t) = E{X(t)} and the covariance function
K{t, s) = covi{X{t), X(s)it, sesC. A d-dimensional
random field is called a Gaussian random field if
(X(ty),..., X(t)) is a multivariate normal distribution for
every choice{t,... 1, }eC.

The mean and the covariance matrix of (X(t;),...,
X(t,)) are given by = (u(ty)...., u(ty)) and

M =(K(t,.t))

n
i,j=1

The random field X(t) is said to be stationary if
(X{t),..., X(t)) and (X{t;+h),..., X(t;+h)) have the
same distribution for any heR? and is said to be
isotropic  random field if (X(y),..., X{t)) and
(X(gty),..., X{qt,)) have the same distribution for any
rotation ¢ in RY. For a stationary random field the mean
function is constant, i.e., u(t) = p for every te R%,

In this paper, we assume that X{t) is smooth and
stationary Gaussian random field with mean u(t) = p
and variance Var{X(t)} = o~

Let X(t) be the first derivative of X(t) with respect
to the i™ coordinate of t and Xij(t) be the second partial
derivative of X(t) with respect to i and j* coordinates.
We also assume that the following condition is fulfilled

a5, X, 0) | <[

for ¢=0 and t in some neighborhood of 0. Here ||||
denotes the Euclidean norm in R”.

The excursion set of a random field X(t) in C
above a level u is defined as the set of points te C for
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which X(t)>u Let us denote the excursion set of X{t) in
C above u by A(X, u, C). The excursion set is very
important and has been studied extensively in [1]. With
probability tending to one as u—»oe, the excursion set of
smooth Gaussian random field X(t) has simpler
topology, ie., it is a union of disjoint convex
components where each convex component contains
one local maximum of X(t). Moreover, N, the number
of convex components of A(X, u, C), follows
approximately the Poisson distribution [1]. The mean of
this Poisson distribution is given by

2
E{N} = vol(C)det(A) o @4t () @72 exp[—zuz] (1)
(s}
Where, vol(C) is the volume of C and A is the
covariance matrix of (3(t),..., X)) Then E{N} can

be used to find the following accurate approximation
for P{supcX(t)zu}:

P{supX(t) >u

teC

}:E{N}

}is

So the problem of approximating P{supX(t) >u

teC

reduced to the problem of approximating E{N}.
THE PROBLEM

Let t be a location in a region of interest C and X(t)
be the soil property at t. Let X(1) be a smooth and
stationary ~ Gaussian random field TLet X
(X(ty),... . X(t,)) be the observed values of X(t) at the
locations ty,...t,e C\D = {te C: t¢ D}, where DcC. Our
aim 1s to predict the excursion set of X(t) and its
characteristics in the domain D, i.e., to predict 3, =
(X(s1),... . X(Sp))y where s1,... .8, D.

If we denote an n-dimensional vector of ones by 1,
then from the multivariate normal theory, the stacked
vector X© (X, X)) has (ntm)-dimensional
multivariate normal distribution with mean pu = plyig,
where l,, is (ntm)-dimensional vector of ones and
covariance matrix

A

z, =(K(t,t)] Za =(Kis,.s))

n
1]

Iy X
2;1'2 z

22

Where,

m
ij

j=1

549

and

1,m

2, :(K(tl,sj))

i=1,j=1

The conditional distribution of X; given X; = x; 1s
also m-dimensional multivariate normal with mean

Myp =Myt 2“21217110(1 -u)
and covariance matrix

=ist

21711712

X,=L,-k
Where,

ty = plyand p, = pl. The mean , , 1s a function n
x; which can be used to predict X,. Various covariance
functions for X(t) are available in the literature [4]. A

common choice is the following one
K(t,s) = exp{%”t —s[ j re(0,2,7>0  (2)
T

PREDICTION

Let us denote the predictive distribution of X,
given X; = x; by f(34]x;). The predictive distribution of
X, given X; = x; depends on the parameters ¢°, u and
. So we estimate them using the data X, and then we
plug the estimates in the density f{(x,|%;). To predict the
characteristic of the excursion set A(X, u, D) in D, we
simulate a large sample from the distribution of X,
given X; = x;. These realizations can then be used to
predict the size of the excursion set, the cluster size, the
number of components above u and supyp x(L).

The general form of the predictor is E{H(,)X, =
%3, where H(X;) denotes a characteristic of the
excursion set of X(t) in D. Since it is not possible to
simulate a random field on a compact set D, we use
instead D, a grid of D. Let X3, j = L., M be M
realizations from f(xgx;). Then the {following
characteristics of the excursion set can be predicted

Size of A(X, u, D): The size of A, u, D) can be
predicted as:

- 1 M -
E{laGouD)||X, =x,] = MZ‘A(ij,u, D))
=1

Cluster size of A(X, u, D): For large u, let

S(X,;.D) be the cluster size of X3;0on D, j=1,..., M.

2j2
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Then the cluster size can be predicted as follows
N 1 M N
E{SxD)|X =x,}= EE S(X,,.D)
j=1

Number of clusters N: Let N]be the number of

components of Xy; (t) on D . Then N can be predicted
by:

R
E{N|X1:xl}:ﬁ2N].
=1

sup,_ X(t) : The supremum of X(t) on D can be
predicted by

1 TV
EsupX(t) [ X, :xl} :MZmax{ij}
j=1

teD

PREDICTION INTERVALS

Based on a large number of realizations from
f(x,/x,), we can find a 95% prediction intervals for A(X,
u, D), N, S(X,u) and supypX(L).

The following algorithm is designed to find these
prediction intervals.

Simulate X,i(t), j = 1,...., M, realizations from
fxolx1).

For each j, find A(ij,u,ﬁ) , the excursion set of
Xy on D.

For each excursion set in 2, find the clusters size,
the number of clusters and the max {X,;}.

For each characteristic you find in 3, the prediction
interval is [L, U], where L and U are the 2.5% and the
97.5 percentiles of the empirical distribution.

ESTIMATION OF p, 6> AND 7

Since the parameters 1, ¢* and T° are unknown and
the predictive density f(xx;) depends on these
parameters, we plug their estimates in f(gu|x;). The
Maximum Likelihood Estimates (MLE’s) of p, ¢* and

T are the values [i & and ¥ which maximize the

likelihood function
1 T
L -1 7_2(X1 7M1n)
Luo’?) =20 detE, ) Fexp| 20
21_11 (Xl - “"]‘n)

SIMULATION

We restrict our simulation to the case d = 1.
Simulation of a Gaussian process inD=[0, is

_—

Table 1: Prediction interval for excursion set characteristics

Characteristics A(X,2D) SXD) N sup,, X(t)

Prediction interval [0, 8] [0,3] [0,6] [1.735, 3 462]

equivalent to simulation a Gaussian vector on a grid of
D. So, to simulate a stationary Gaussian process X(1),
teD = [0, A] with covariance function K(t,s), we follow
the following steps:

Consider the grid

D={0=t,...t, =A)

Find the covariance matrix ¥ =(K(t,t)) _ and the

B
s
mean vector pu = plg

Simulate a random vector of length B from Ng(p, %)

We consider the covariance function (2) and the
value u =0, o = 1 and T =1 to simulate a sample path
of X(t) on the interval C = [0, 256]. Then the data is
divided into two vectors X = (X;, X,) where X
represents the first 128 entries of X and X, the
remaining 128 enfries. So X; is considered as the
observed data and X, as the reference data for our
prediction. We use the theory developed in this
paper to predict the characteristics of the excursion of
X n D = [129, 256]. The excursion set of the
reference data X, has the observed characteristics:
A(X,,2.D) =4, S(X,.D)=1,N= 4 and max X, =

2.5544. A large sample of M = 5000 realizations {rom
f(xp]%) is simulated and 95% prediction intervals for
these excursion set characteristics are obtained. We
summarize the results in Table 1.

2j°

CONCLUSION

In this paper, we considered the problem of
predicting the excursion set and its characteristics for a
smooth and stationary Gaussian random field We did
not get closed forms for the predictors, but we obtained
them based on a large sample from the predictive
density. Simulation shows that the prediction intervals
contain the observed characteristics.
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