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Abstract: Humoral immunity is one component of the human immune system and is the most important 
determinant of whether an invading pathogen (such as bacteria or viruses) establishes infection. This form 
of immunity is mediated by B lymphocytes and involves the neutralizing of pathogen receptor binding sites
to inhibit the pathogen's entry into target cells. A master equation in both discrete and in continuous form is 
presented for a pathogen bound at n sites becoming a pathogen bound at m sites in a given interaction time. 
To track the time-evolution of the antibody-receptor interaction, it is shown that the process is most easily 
treated classically and that in this case the master equation can be reduced to an equivalent one-dimensional
diffusion equation. Thus, well known diffusion theory can be applied to antibody-cell receptor interactions. 
Three distinct cases are considered depending on whether the probability of antibody binding compared to 
the probability of dissociation is relatively large, small or comparable and numerical solutions are given.
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INTRODUCTION

Antibodies bind to and block receptors on
invading pathogens (such as viruses) and this reduces 
the pathogen's ability to attach to target cell receptors. 
As a consequence, the ability of the pathogen to enter a 
target cell is inhibited. In addition, antigen-bound
antibodies produce a signal that activates specific white 
blood cells, the macrophages, which then engulf and 
destroy the bound pathogen. Since viruses and many
bacteria reproduce within cells, blocking the cell
attachment would limit such pathogens from
replicating. The time -dependent dissociation and
recombination of complexes formed by antibodies
attaching to the surface of pathogens is a fundamental 
process in mathematical immunology, in general and in 
the study of humoral immunity, in particular and is the 
topic of investigation in this paper. The aim here is to 
provide a novel way of estimating the time-evolution of 
the distribution of the specific number of bound
antibodies (aggregates of a certain size).

Two approaches have been used to calculate the 
aggregate size distribution. The first approach, the
obvious one, is to write down differential equations in 
the form of chemical rate equations for the
concentrations of all possible ligand-receptor
aggregates [1] (ligands are cell surfaces with binding 
sites that may be bound). However, a complete
description requires the solution of a large set of
coupled  ordinary  differential equations [2], one for 

each aggregate.  While this system  is  straightforward 
to  formulate,  the  order  of  the  system is very large. 
For example, rat basophilic leukemia cells have
approximately 105 receptors per cell and a chlamydial 
elementary body has approximately 3×104 receptors. If 
this approach is used to estimate a time-dependent
aggregate distribution size the set of equations must be 
truncated [1, 3]. A second approach is less general, but 
can be used to obtain the complete time-dependent
aggregate size distribution by solving just two coupled 
nonlinear differential equations [4]. The kinetics of the 
ligand-receptor complexes distribution is presented in 
the form of a series [5, 6]. Although this works well for 
relatively small numbers of binding sites (1-100), a 
simpler mathematical approximation would be very
useful for a system when the number of binding sites is 
significantly greater [7]. Here, another approach is
developed to obtain the complete time-dependent
aggregate size distribution for cell surfaces with many 
receptors (multivalent ligands) bound by molecules that 
bind at one receptor only. It involves solving a single 
diffusion equation. A single diffusion equation to
describe the aggregate size distribution will be derived 
according to two methodologies. One example of such 
a binding molecule is the Fab fragment of an antibody. 
It comprises one arm of the full Y-shaped antibody. 
While this restricts the model's applicability to
antibody-pathogen interactions in general, there are 
many systems for which this assumption is appropriate. 
For  example, the  pent-valent  adenovirus  requires  full 
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occupancy by antibodies to achieve neutralization. This can  be achieved by  Fabs  but not whole antibodies (IgG 
molecules in this case) [8]. A similar phenomenon has  been found in antibody-Chlamydia interactions [9]. It is also
assume that all binding sites are equivalent and that adsorbed particles do not interact, that is, the binding of a 
molecule at one site does not block the binding at a neighbouring site.

Master equation of antibody attachment on an infectious particle: Consider an infectious particle bound at n 
sites by antibodies. Given that there is a probabilistically inferred rate at which the particle bound at n sites can 
become a particle bound at m sites, a well-known discrete version of any such model is of the form:

( ) ( ) ( ) ( ) ( )
N

k 0

E n,t
K m,n E m,t K n,m E n,t

t =

∂
=  −  ∂ ∑ (1)

where, E(n, t) is the concentration of pathogens with n antibodies attached and N is the maximum number of
antibodies that can be bound to a pathogen simultaneously. This equation states that particles bound by n antibodies 
may leave this state by making transitions to particles bound by m antibodies, gaining or losing antibodies, at a rate 
K(n, m)E(n, t); K(n, m) denotes the rate that particles bound at n sites become particles bound at m sites. Transitions 
from n antibodies to n-1 or n+1 (or remaining with n) antibodies on a particle can be expected to dominate the rate 
function, K.

The discrete Eq. (1) for the dynamics of the particle-antibody concentrations has the analogous continuous 
version,

( ) ( ) ( ) ( ) ( )
f

0

E x, t
k x , x E x , t k x,x E x,t dx

t
∂

′ ′ ′ ′= −
∂ ∫ (2)

where, k(x, x′) is the probabilistically inferred rate of undergoing a transition from state x to state x′ per unit 
time and f is the maximum number of antibodies on average that can attach to the surface of the pathogen 
simultaneously.

In the absence of immune clearance and cell infection the pathogen-antibody concentrations, E(x, t), have a 
non-trivial equilibrium distribution, which we denote by Ee(x). At equilibrium, 

( )E x, t
0

t
∂

=
∂

and the requirement for detailed balancing [10] leads to the condition

( ) ( ) ( ) ( ) ( ) ( )e eR x , x k x ,x E x k x,x E x R x,x′ ′ ′ ′ ′= = = (3)

From Eq. (3), we obtain

( ) ( )
( )

( )e e

P x,x
E x E x

P x , x
′

′ =
′

(4)

Integrating both sides of Eq. (4) over the interval x′ = (0, f) and noting that because neither any source nor loss 
are considered, the number of pathogens will remain at a fixed level, 

( )
f

e 0
0

E x dx E′ =∫

then the following equilibrium distribution is obtained:
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( ) ( )
( )

1f

e 0
0

P x ,x
E x E dx

P x , x

−
 ′

′=  ′  
∫ (5)

The equilibrium distribution is now used to introduce the non-dimensionalized concentration

( ) ( )
( )e

E x, t
X x,t

E x
= (6)

which is the ratio of the concentration of pathogens with x antibodies attached to the associated equilibrium 
concentration. Then, Eq. (2) can be written in the symmetrical form

( ) ( ) ( ) ( )
f

e
0

X x, t
E (x) R x,x X x , t X x,t dx

t
∂

′ ′ ′=  −  ∂ ∫ (7)

Transformation to a diffusion equation by Taylor expansion of integrand: I now transform the master equation, 
Eq. (7), to an equivalent diffusion equation. The transformation assumes the integrand in Eq. (7) can be expanded in 
a Taylor series about x′ = x and I assume that the kernel, R(x, x′), is separable and large only for x′≈x. I can then 
anticipate that the solution of Eq. (7) can be well approximated by the solution of

( ) ( ) ( ) ( )e

X x, t
E (x) R x,x X x , t X x,t dx

t

∞

−∞

∂
′ ′ ′=  −  ∂ ∫ (8)

( )
2

2
e 1 32

X X (x) X
E (x) (x) O

t x 2 x
∂ ∂ µ ∂

= µ + + µ
∂ ∂ ∂

(9)

where,

( ) ( )( )n
n x R x,x x x dx

∞

−∞

′ ′ ′µ = −∫ (10)

is the nth moment of the change in antibody level (x′-x) with respect to R(x, x′). Observing symmetry of R(x, x′) on 
interchange of x and x′ requires  that

( ) ( )R x,x S x,′ = ∆ (11)

where,

( )x x x 2′= + (12)

is the mean of the initial and final antibody levels and

∆ = x′ -x (13)

is the change in the antibody levels. Assuming ( )S x, ∆  is sharply peaked at ∆ = 0 I expand about ∆ = 0 and obtain

( ) ( )2 4
1

x x0

S
x d O

x

∞

=

∂
µ = ∆ ∆ + ∆

∂∫ (14)

and
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( ) ( ) ( )2 4
2

0

x 2 S x, d O
∞

µ = ∆ ∆ ∆ + ∆∫ (15)

so that

( ) ( )42
1

1
x O

2 x
∂µ

µ = + ∆
∂

(16)

and substituting (16) into (9) results in

2
e

X (x) XE (x)
t x 2 x

∂ ∂ µ ∂ =  ∂ ∂ ∂ 
(17)

a one-dimensional diffusion equation. The boundary conditions necessary to determine X(x,t) uniquely are

x 0 x f

X X0and 0
x x= =

∂ ∂= =
∂ ∂

(18)

since a pathogen cannot have a negative number of antibodies and will not have more than the maximum of f 
antibodies. Eq. (17) can be written as:

2
2 2

e 2

X (x) X 1 X
E (x)

t 2 x 2 x x
∂ µ ∂ ∂µ ∂

= +
∂ ∂ ∂ ∂

(19)

and thus there are two components indicating how the distribution will change with time, namely, X will diffuse in 
the direction of least antibodies and will be balanced by what equilibrium should be according to the probability 
distribution that influences the moment, µ2(x).

Transformation to a diffusion equation by assuming separable kernel: The second method of transforming (7) 
into a diffusion equation involves the assumption that the kernel, R(x, x′), can be separated in the form

( ) ( ) ( )
( ) ( )

1 2

1 1

r x r x ,x x
R x,x

r x r x ,x x
′ ′ >′ =  ′ ′ <

(20)

Substituting (20) into (7) I obtain

( ) ( ) ( ) ( ) ( )
x f

e 2 1 1 2
0 x

X
E (x) A(x)X x,t r ( x ) r x X x , t dx r(x) r x X x , t dx

t
∂ ′ ′ ′ ′ ′ ′+ = +
∂ ∫ ∫ (21)

where,

( ) ( )
x f

2 1 1 2
0 x

A(x) r ( x ) r x dx r(x) r x dx′ ′ ′ ′= +∫ ∫ (22)

On differentiating Eq. (21) twice with respect to x, I obtain

( ) ( ) ( ) ( )
x f

2 1
e 1 2

0 x

X dr dr
E AX r x X x , t dx r x X x , t dx

x t dx dx
∂ ∂  ′ ′ ′ ′ ′ ′+ = + ∂ ∂  ∫ ∫ (23)

and
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( ) ( ) ( ) ( ) { }
x f2 2 2

2 1
e 1 2 2 12 2 2

0 x

X d r d r
E AX r x X x , t d x r x X x , t d x W r , r X(x,t)

x t dx dx
∂ ∂  ′ ′ ′ ′ ′ ′+ = + − ∂ ∂  ∫ ∫ (24)

where,

{ } 1 2
2 1 2 1

dr dr
W r , r r r

dx dx
= − (25)

is the Wronskian of r2 and r1. Combining (21), (23) and (24), I find

{ } { }
2 2 2

21 2
2 1 e 2 e 1 e 2 12 2 2

X d r X d r XW r , r E AX W r ,E AX W r , E AX W r , r X
x t dx t dx t
∂ ∂ ∂ ∂     + = + − + −    ∂ ∂ ∂ ∂     

(26)

with the boundary conditions

1 e
x 0

X
W r , E AX 0

t =

∂ + = ∂ 
(27)

and

1 e
x f

X
W r , E AX 0

t =

∂ + = ∂ 
(28)

Since X = 1 and X
0

t
∂

=
∂

 at equilibrium, A satisfies

{ } { } { }
2

22 1
2 1 2 1 2 12

d A d dA dr drW r , r W r , r W , A W r , r
dx dt dx dx dx

   − + = −     
(29)

with the boundary conditions

{ }1 x 0
W r , A 0

=
= (30)

and

{ }2 x f
W r , A 0

=
= (31)

Therefore, on evaluating the Wronskians in (26), (27) and (28), I obtain

2 2

e e e2

1 dA X Z X 1 dW X A X
1 E E E

W dx t W x t W dx x t x W x
   ∂ ∂ ∂ ∂ ∂ ∂ ∂       − − − =          ∂ ∂ ∂ ∂ ∂ ∂ ∂          

(32)

with the boundary conditions

1 e 1
x 0

X X
W r , E r A 0

t x
=

 ∂ ∂  + =  ∂ ∂  
(33)

and

2 e 2
x f

X X
W r , E r A 0

t x
=

 ∂ ∂  + =  ∂ ∂  
(34)
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where, W is used to abbreviate W{r2, r1}. Equation (32) with its boundary conditions (33) and (34) is completely 
equivalent to the original integral master equation (7) in the case where the kernel is separable in the form of Eq. 
(20). However, in the often realistic case of small transitions between receptor states per interaction time, A is small 

compared to W and e
X

E
t

∂
∂

 is small compared to A, resulting in the approximation

2

e
X A X

E
t x W x

 ∂ ∂ ∂
=  ∂ ∂ ∂ 

(35)

with boundary conditions

x 0 x f

X X0an d 0
x x= =

∂ ∂= =
∂ ∂

(36)

Therefore, I again determine that in the limit of small transmissions between antibody-pathogen complex states, 
the time -dependent aggregate size distribution can be well-described by an ordinary diffusion equation.

Probability distribution for change in number of antibodies: To illustrate the usefulness of the new
methodologies, I solve the diffusion equation (using the first method). To solve the diffusion equation a form for 
R(x, x′ ) is required. Consider the quantum version of antibody-pathogen interactions. In a time characteristic of the 
interaction of an antibody with an antigen, of duration δt, a bound site may dissociate with probability q or remain 
bound with probability 1-q. Here, q is related to the antibody's dissociation constant, kD. Also, an antibody may 
attach to an unbound site with probability p or an unbound site may remain unbound with probability 1-p. Here, p is 
related to the antigen-antibody association rate, kA. Then, it can be shown that:

( ) ( ) ( )
min{f j,i}

i k v(i) ( j i k)k j i k

k max{i j,0}

v(i) i
P i , j q 1 q p 1 p

j i k k

−
− − − +− +

= −

   
= − −  − +  

∑ (37)

where, P(i,j) denotes the probability that a pathogen bound at i sites becomes a pathogen bound at j sites in one 
interaction time and v(i) is the valence (the number of sites remaining available for binding if i are already bound). 
Ignoring any spatial interference

v(i) = f-i (38)

Here,

( )
N

j 0
P i , j 1

=

=∑ (39)

as required. Since Γ(n+1) = n!, the analogous probability distribution for the approximate continuous distribution is 
used, namely,

( ) ( )
min{f x , x } x x x f x

max{x x , 0 }
P x,x C x,x q (1 q) p (1 p) d

′− ′ ′ζ −ζ − + ζ − − ζ

′−
′ ′= − − ζ∫ , (40)

Where, C(x, x′) is the number of ways a pathogen bound at x sites can become a pathogen bound at x′ sites and 
can be expressed as:

( ) ( ) ( )
( ) ( ) ( ) ( )

f x 1 x 1
C x,x

f x 1 x x 1 1 x 1
Γ − + Γ +

′ =
′ ′Γ − − ζ + Γ − + ζ + Γ ζ + Γ − ζ +

(41)

An example of the probability distribution is illustrated in Fig. 1.
Then, k(x, x′) = k1P(x, x′), where k1 is a rate parameter that incorporates the interaction time δt. The equilibrium 

distribution, Ee(x), can now be determined according to eq. (5), namely,
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Fig. 1: A typical probability distribution for moving from one antibody level to another. Here, the probability of a 
pathogen bound with 18 antibodies becoming a pathogen bound by x antibodies in one interaction time is 
illustrates. Here, p = 0.005, q = 0.003 and f = 100

Fig. 2: Plots of the equilibrium distribution , Ee(x). Here, f1 = f = 100. (a) Binding probability low relative to
dissociation probability (p = 0.00005, q = 0.03). (b) Binding probability comparable to dissociation
probability (p = 0.005, q = 0.003). (c) Binding probability high relative to dissociation probability (p = 0.05, 
q = 0.0003)

( )
( )

1
f

e 0 0

P x,x
E (x) E dx

P x , x

−
 ′

′=  ′  
∫ (42)

which is illustrated in Fig. 2 for various probabilities, p and q.
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Fig. 3: Sequence of numerical solutions for E(x), the pathogen concentration of antibody distribution, for various 
times. Here, p = 0.005, q = 0.003

Fig. 4: Sequence of numerical solutions for E(x), the pathogen concentration of antibody distribution, for various 
times. Here, p = 0.05, q = 0.0003

In the limiting case as p→0 (that is, antibodies do not attach to unbound sites because the antibody and ligand 
site are not complimentary),

e 0E (x) E (x)= δ (43)

Where, δ(x) is the dirac delta function. Although the reaction of ligand-receptor binding is reversible, in 
particular cases of specific binding the dissociation reaction can be neglected [7]. Then in the limiting case as q→0
(that is, irreversible binding),
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e 0E (x) E (x f )= δ − (44)

Numerical solution: Given an expression for R(x, x′),
an expression for the kernel of our diffusion equation 
can be determined, µ2(x). The magnitude of the kernel 
function varies considerably with the  probabilities  for
binding  and dissociation. This greatly influences the 
time for diffusion. A fully implicit vertex-centred finite 
volume method is employed [11] to obtain numerical 
solutions to the one-dimensional diffusion equation,
equation (17) and then equation (6) is used to revert to 
the solution for E(x,t), the concentration of pathogens 
with x antibodies attached at time t. Fig. 3 and 4
illustrate the solutions for E at various times, for two 
different expressions of the kernel, µ2(x), corresponding 
to relative medium and large probabilities of antibody 
attachment. The solution for E is not displayed when 
the probability of antibody attachment is small because 
there is little change from the initial distribution.

CONCLUSIONS

The immune system is crucial in neutralizing many 
infectious agents and the humoral arm of the immune 
system is an example of the very important process of 
receptor interactions. The master equation for infectious 
particle-antibody levels in discrete and classical forms 
has been presented and two methods for how the
classical master equation can be transformed to an
equivalent diffusion equation in a non-dimensional
variable has been demonstrated. Thus, a system of N (N 
usually very large) coupled ordinary differential
equations has been reduced to a single diffusion
equation. The diffusion equation is much easier to work 
with, is computationally efficient and the theory of such 
an equation is well-known. The theory is also generally 
applicable to many infectious particles.
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