On the Numbers of the Form $n=x^{2}+\mathbf{N y}^{2}$

Nihal Yilmaz Özgür
Department of Mathematics, Balikesir University, 10145 Çagis, Balikesir, Turkey

Abstract

In the present paper we consider the problem when a natural number n can be represented in the form $n=x^{2}+N y^{2}$. To get some results about this problem we use the group structures of the Hecke groups $H(\sqrt{N}), N \geq 5$ integer.

Key words: Representation of integers. Hecke groups

INTRODUCTION

Hecke groups $\mathrm{H}(\lambda)$ are the discrete subgroups of $\operatorname{PSL}(2, \mathrm{R})$ (the group of orientation preserving isometries of the upper half plane U) generated by two linear fractional transformations

$$
\mathrm{R}(\mathrm{z})=-\frac{1}{\mathrm{z}} \text { and } \mathrm{T}(\mathrm{z})=\mathrm{z}+\lambda
$$

where, ? is a fixed positive real number. They were introduced by Hecke, [1]. Hecke showed that when? = 2 or when $?=?_{q}=2 \cos (\mathrm{p} / \mathrm{q}), \mathrm{q} \in \mathrm{N}, \mathrm{q}=3$, the set

$$
\mathrm{F}_{\lambda}=\left\{\mathrm{z} \in \mathrm{U}: \operatorname{Re}(\mathrm{z})\left|<\frac{\lambda}{2},|\mathrm{z}|>1\right\}\right.
$$

is a fundamental region for the group $H(\lambda)$ and also F_{λ} fails to be a fundamental region for all other $\lambda>0$. It follows that $H(\lambda)$ is discrete only for these values of $\lambda,[1]$.

It is well-known that the Hecke groups $H\left(\lambda_{q}\right)$ are isomorphic to the free product of two finite cyclic groups of orders 2 and q, that is, $\mathrm{H}\left(\lambda_{\mathrm{q}}\right) \cong \mathrm{C}_{2} * \mathrm{C}_{\mathrm{q}}$. For $\mathrm{q}=3$, we get the modular group $\mathrm{H}\left(\lambda_{3}\right)=\operatorname{PSL}(2, Z)$. Also it is known that the Hecke groups $\mathrm{H}(\lambda), \lambda \geq 2$, are isomorphic to the free product of a cyclic group of order 2 and a free group of rank 1 , that is, $\mathrm{H}(\lambda) \cong \mathrm{C}_{2} * Z$, [2, 3].

Let N be a fixed positive integer and x, y are relatively prime integers. Let us consider the problem when a natural number n can be represented in the form $n=x^{2}+N y^{2}$. For $N=1$, the answer of this problem, is given by Fermat's two-square theorem. In [4], Fine proved this theorem by using the group structure of the
modular group $\mathrm{H}\left(\lambda_{3}\right)=\operatorname{PSL}(2, \mathrm{Z})$. In [5], to solve the problem for $\mathrm{N}=2$ and $\mathrm{N}=3$, Kern-Isberner and Rosenberger used the some facts about the group structures of the Hecke groups $\mathrm{H}(\sqrt{2})$ and $\mathrm{H}(\sqrt{3})$ where $?_{\mathrm{q}}=2 \cos (\mathrm{p} / \mathrm{q})$ and $\mathrm{q}=4,6$, respectively. Aside from the modular group, these Hecke groups are the only ones whose elements are completely known, [6]. Also, Kern-Isberner and Rosenberger extended these results for $\mathrm{N}=5,6,7,8,9,10,12,13,16,18,22,25$, $28,37,58$ by considering the groups G_{N} consisting of all matrices V of type (1) or (2):

$$
\mathrm{V}=\left(\begin{array}{cc}
\mathrm{a} \sqrt{\mathrm{~N}} & \mathrm{~b} \tag{1}\\
\mathrm{c} & \mathrm{~d} \sqrt{\mathrm{~N}}
\end{array}\right) ; \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathbb{Z}, \mathrm{adN}-\mathrm{bc}=1
$$

and

$$
\mathrm{V}=\left(\begin{array}{cc}
\mathrm{a} & \mathrm{~b} \sqrt{\mathrm{~N}} \tag{2}\\
\mathrm{c} \sqrt{\mathrm{~N}} & \mathrm{~d}
\end{array}\right) ; \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathbb{Z}, a d-\mathrm{bcN}=1
$$

where, a matrix is identified with its negative. It is wellknown that $H(\sqrt{N})=G_{N}$ for $N=2,3[7,8]$. The case $\mathrm{N}=4$ can be reduced to the two-square theorem as stated in [5]. In [9], it was considered this problem for all integers $\mathrm{N}=5$ by using the group structures of the Hecke groups $H(\sqrt{N}), N=5$ integer, generated by the two linear fractional transformations

$$
R(z)=-\frac{1}{z} \text { and } T(z)=z+\sqrt{N}
$$

It was given an algorithm that computes the integers x and y for all $\mathrm{N}=2$. These Hecke groups $\mathrm{H}(\sqrt{\mathrm{N}}), \mathrm{N}=5$, are Fuchsian groups of the second kind (see [6], [10] and [11] for more details about the Hecke groups).

Corresponding Author: Dr. Nihal Yilmaz Özgür, Department of Mathematics, Balikesir University, 10145 Çagis, Balikesir, Turkey

Here we shall try to determine some values of n which can be written in the form $n=x^{2}+N y^{2}$. Note that this problem was solved for prime values of n in [12].

RESULTS

From now on we will assume that N is any integer $=5$. By identifying the transformation $\mathrm{z} \rightarrow \frac{\mathrm{Az}+\mathrm{B}}{\mathrm{Cz}+\mathrm{D}}$ with the matrix $\left(\begin{array}{ll}A & B \\ C & D\end{array}\right), H(\sqrt{N})$ may be regarded as multiplicative group of 2×2 real matrices in which a matrix and its negative are identified. All elements of $\mathrm{H}(\sqrt{\mathrm{N}})$ have one of the above two forms (1) or (2). But the converse is not true, that is, all elements of the type (1) or (2) need not belong to $H(\sqrt{N})$. In [6], Rosen proved that a transformation

$$
\mathrm{V}(\mathrm{z})=\frac{\mathrm{Az}+\mathrm{B}}{\mathrm{Cz}+\mathrm{D}} \in \mathrm{H}(\sqrt{\mathrm{~N}})
$$

if and only if A / C is a finite \sqrt{N}-fraction. In $H(\sqrt{N})$, the set of all elements of the form (2) forms a subgroup of index 2 called the even subgroup. It is denoted by $H_{e}(\sqrt{N})$. Having index two, $H_{e}(\sqrt{N})$ is a normal subgroup of $H(\sqrt{N})$. Also, $H_{e}(\sqrt{N})$ is the free product of two infinite cyclic groups generated by T and RTR, [11].

Throughout the paper, we assume that $\mathrm{n}>0, \mathrm{n}$? N and $(\mathrm{n}, \mathrm{N})=1$. In [9], it was shown that the following two conditions are necessary to get some results about the problem under consideration by using the group structure of the Hecke group $\mathrm{H}(\sqrt{\mathrm{N}})$:

- $\quad-\mathrm{N}$ is a quadratic residue modn
- n is a quadratic residue $\bmod \mathrm{N}$.

In fact, these conditions are not sufficient to solve the problem for all numbers n and N. Indeed, we can consider the following example.

Example 2.1: Let $\mathrm{N}=11$ and $\mathrm{n}=23$. Observe that -11 is a quadratic residue $\bmod 23$ and 23 is a quadratic residue mod 11 . But it can be easily checked that the number 23 can not be represented in the form $23=x^{2}+$ $11 y^{2}$ with $(x, y)=1$.

Here we can try to find sufficient conditions.
Let $-N$ be a quadratic residue mod n. Since (n, N) $=1$, there are $\mathrm{k}, \mathrm{l} \in \mathrm{Z}$ such that $\mathrm{kN}-\mathrm{nl}=1$. Hence we have $\mathrm{kN}=1+\mathrm{nl}$ and $\mathrm{kN} \equiv 1(\bmod \mathrm{n})$ and so -k is a quadratic residue $\bmod n$, too. Therefore we have $u^{2} \equiv-k$
$(\bmod n)$ for some $u \in Z$. We get $u^{2} N \equiv-k N(\bmod n)$, $\mathrm{u}^{2} \mathrm{~N} \equiv-1(\bmod n)$ and so we have

$$
\begin{equation*}
\mathrm{u}^{2} \mathrm{~N}=-1+\mathrm{qn} \tag{3}
\end{equation*}
$$

for some $q \in Z$. Now we consider the matrix

$$
B=\left(\begin{array}{cc}
-u \sqrt{N} & -q \tag{4}\\
n & u \sqrt{N}
\end{array}\right)
$$

of which determinant $-u^{2} N+q n=1$. We know that $B \in H(\sqrt{N})$ if and only if $-\frac{u \sqrt{N}}{n}$ is a finite $\sqrt{N}-$ fraction. If $B \in H(\sqrt{N})$, then our problem can be solved using the group structure of $H(\sqrt{N})$. Indeed, B has order 2 as $\operatorname{tr}(B)=0$. Since $H(\sqrt{N}) \cong C_{2} * Z$, each element of order 2 in $H(\sqrt{N})$ is conjugate to the generator R. That is,

$$
\begin{equation*}
\mathrm{B}=\mathrm{VRV}^{-1} \tag{5}
\end{equation*}
$$

for some $\mathrm{V} \in \mathrm{H}(\sqrt{\mathrm{N}})$. We may assume that V is a matrix of type (2), $V=\left(\begin{array}{cc}a & b \sqrt{N} \\ c \sqrt{N} & d\end{array}\right) ; a, b, c, d \in \mathbb{Z}, a d-b c N=1$. Then we obtain

$$
\mathrm{B}=\left(\begin{array}{cc}
(\mathrm{ac}+\mathrm{bd}) \sqrt{\mathrm{N}} & -\left(\mathrm{a}^{2}+\mathrm{Nb}^{2}\right) \tag{6}\\
\mathrm{d}^{2}+N \mathrm{~N}^{2} & -(\mathrm{ac}+\mathrm{bd}) \sqrt{\mathrm{N}}
\end{array}\right)
$$

Comparing the entries, we have $n=d^{2}+N c^{2}$ for some integers d, c. From the discriminant condition, clearly we get $(\mathrm{d}, \mathrm{c})=1$.

Therefore if we can find the conditions that determine whether $-\frac{\mathrm{u} \sqrt{\mathrm{N}}}{\mathrm{n}}$ is a finite $\sqrt{\mathrm{N}}$-fraction or not, then we can get some more results about this problem using the group structure of $\mathrm{H}(\sqrt{\mathrm{N}})$. Note that we are unable to give the exact conditions. But, from Lemma 4 in [3], we know that A / C is a finite $\sqrt{\mathrm{N}}$ fraction if and only if there is a sequence a_{k} such that:

$$
\begin{equation*}
\frac{A}{C}=\frac{a_{k+1}}{a_{k}} \text { or }-\frac{a_{k-1}}{a_{k}} \tag{7}
\end{equation*}
$$

for some k. The sequence a_{k} is defined by:

$$
\begin{gather*}
a_{0}=1, \\
a_{1}=s_{1} \sqrt{\mathrm{~N}}, \tag{8}\\
\mathrm{a}_{\mathrm{k}+1}=\mathrm{s}_{\mathrm{k}+1} \sqrt{\mathrm{~N}} \mathrm{a}_{\mathrm{k}}-\mathrm{a}_{\mathrm{k}-1}, \mathrm{k} \geq 2,
\end{gather*}
$$

where, s_{k} 's are nonzero integers. Here we use this lemma to find some values of n which can be written in the form $n=x^{2}+N y^{2}$.

In (5), if we choose V such that $V \in H(\sqrt{N})$, then $B=V R V^{-1} \in H(\sqrt{N})$ and we find some values of n. Let us start by choosing $s_{1}=x$ and $s_{2}=y$ in (8). We get

$$
\begin{gather*}
\mathrm{a}_{0}=1 \\
\mathrm{a}_{1}=\mathrm{x} \sqrt{\mathrm{~N}} \tag{9}\\
\mathrm{a}_{2}=\mathrm{xyN}-1 .
\end{gather*}
$$

Now $-\frac{a_{1}}{a_{2}}=-\frac{x \sqrt{N}}{x y N-1}$ is a finite \sqrt{N}-fraction and hence the matrix

$$
V=\left(\begin{array}{cc}
-x \sqrt{N} & 1 \\
x y N-1 & -y \sqrt{N}
\end{array}\right)
$$

is in $H(\sqrt{N})$. If we compute the matrix $V R V^{-1}$, we find

$$
\mathrm{B}=\left(\begin{array}{cc}
* & -\left(1+\mathrm{Nx}^{2}\right) \\
(\mathrm{xyN}-1)^{2}+\mathrm{Ny}^{2} & *
\end{array}\right) .
$$

Comparing the entries we have

$$
\begin{equation*}
\mathrm{n}=(\mathrm{xyN}-1)^{2}+\mathrm{Ny}^{2} \text { and } \mathrm{q}=1+\mathrm{Nx}^{2} \tag{10}
\end{equation*}
$$

Notice that $\mathrm{n}=1(\bmod \mathrm{~N})$ in this case. But the converse statement is not true everywhen. In Example 2.1, we have seen that $23=1(\bmod 11)$ and 23 can not be written in the form $23=x^{2}+11 y^{2}$.

From now on, without loss of generality we will assume that $\mathrm{c}>0$.

Lemma 2.2: $\xi \in U$ is a fixed point of an elliptic element $E \in H(\sqrt{N})$ if and only if $\xi=\frac{-d \sqrt{N}+i}{c}$ where $\mathrm{d}^{2} \mathrm{~N}+1 \equiv 0(\bmod \mathrm{c}), \mathrm{c}(>\mathrm{N})$ is a quadratic residue \bmod N and $-\frac{\mathrm{d} \sqrt{\mathrm{N}}}{\mathrm{c}}$ is a finite $\sqrt{\mathrm{N}}$-fraction.

Proof: We know that any elliptic element E in $H(\sqrt{N})$ is conjugate to the generator $R(z)=-1 / z$ and an odd element of the form

$$
\mathrm{E}=\left(\begin{array}{cc}
-\mathrm{d} \sqrt{\mathrm{~N}} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d} \sqrt{\mathrm{~N}}
\end{array}\right) ;-\mathrm{d}^{2} \mathrm{~N}-\mathrm{bc}=1
$$

since $\operatorname{tr}(E)=0$. The fixed points of E are given by
$\frac{-d \sqrt{N} \pm i}{c}$ and $-d^{2} N-b c=1$. Clearly $\xi=\frac{-d \sqrt{N}+i}{c} \in U$ and $-\frac{\mathrm{d} \sqrt{\mathrm{N}}}{\mathrm{c}}$ is a finite $\sqrt{\mathrm{N}}$-fraction. Let $E=V R V^{-1}$ for some $V \in H(\sqrt{N})$. If V is of the form (1) then we have

$$
\mathrm{E}=\left(\begin{array}{cc}
\alpha \sqrt{\mathrm{N}} & \beta \\
\gamma & \delta \sqrt{\mathrm{~N}}
\end{array}\right)\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
\delta \sqrt{\mathrm{N}} & -\beta \\
-\gamma & \alpha \sqrt{\mathrm{N}}
\end{array}\right)=\left(\begin{array}{cc}
(\alpha \gamma+\beta \delta) \sqrt{\mathrm{N}} & * \\
\gamma^{2}+\delta^{2} \mathrm{~N} & *
\end{array}\right) .
$$

Comparing the entries we have c is of the form $\gamma^{2}+\delta^{2} \mathrm{~N}$ for some integers γ, δ. This shows that $\mathrm{c} \equiv \gamma^{2}(\bmod \mathrm{~N})$ and so c is a quadratic residue $\bmod \mathrm{N}$. If V is of the form (2), it can be similarly checked that c is a quadratic residue $\bmod \mathrm{N}$.

Conversely, assume that c divides $\mathrm{d}^{2} \mathrm{~N}+1, \mathrm{c}(>\mathrm{N})$ is a quadratic residue $\bmod N$ and $-\frac{d \sqrt{N}}{c}$ is a finite $\sqrt{\mathrm{N}}$-fraction. Then the element

$$
E=\left(\begin{array}{cc}
-d \sqrt{N} & -\left(d^{2} N+1\right) / c \\
c & d \sqrt{N}
\end{array}\right) \in H(\sqrt{N})
$$

is elliptic of order 2 and fixes $\xi=\frac{-d \sqrt{N}+i}{c}$.
Lemma 2.3: $\xi \in U$ is a fixed point of an elliptic element $\mathrm{E} \in \mathrm{H}(\sqrt{\mathrm{N}})$ if and only if ξ is equivalent to the point i in $H(\sqrt{N})$.

Proof: There exists a unique point $\eta \in F_{\sqrt{N}}$ equivalent to ξ. If we write $\xi=V(\eta)$, then η is fixed by the transformation $\hat{E}=V^{-1} E V \in H(\sqrt{N})$. If E is elliptic then so is \hat{E}. But i is the only elliptic fixed point in $F_{\sqrt{N}}$. Hence ξ is equivalent to the point i.

Conversely, if $\xi=\mathrm{V}(\mathrm{i}), \mathrm{V} \in \mathrm{H}(\sqrt{\mathrm{N}})$ and E is the elliptic element fixing i , then ξ is fixed by the elliptic element VEV^{-1}.

Remark 2.4: Observe that for $\mathrm{V}=\left(\begin{array}{cc}\alpha \sqrt{\mathrm{N}} & \beta \\ \gamma & \delta \sqrt{\mathrm{N}}\end{array}\right) \in$ $\mathrm{H}(\sqrt{\mathrm{N}})$ with γ and δ are relatively prime, we have:

$$
\begin{equation*}
\mathrm{V}(\mathrm{i})=\frac{(\alpha \gamma+\beta \delta) \sqrt{\mathrm{N}}+\mathrm{i}}{\gamma^{2}+\delta^{2} \mathrm{~N}} \tag{11}
\end{equation*}
$$

and for $\mathrm{V}=\left(\begin{array}{cc}\alpha & \beta \sqrt{\mathrm{N}} \\ \gamma \sqrt{\mathrm{N}} & \delta\end{array}\right) \in \mathrm{H}(\sqrt{\mathrm{N}})$ with γ and δ are relatively prime, we have:

$$
\begin{equation*}
\mathrm{V}(\mathrm{i})=\frac{(\alpha \gamma+\beta \delta) \sqrt{\mathrm{N}}+\mathrm{i}}{\gamma^{2} \mathrm{~N}+\delta^{2}} \tag{12}
\end{equation*}
$$

Now we prove the following theorem:
Theorem 2.5: Let c ($>\mathrm{N}$) be any positive divisor of $d^{2} N+1$. Assume that c is a quadratic residue $\bmod N$ and $-\frac{d \sqrt{N}}{c}$ is a finite \sqrt{N}-fraction. Then c can be written as $c=x^{2}+N y^{2}$ with $x, y \in Z$ and $(x, y)=1$.

Proof: Suppose that c satisfies the conditions given in the statement of the theorem. Then by the sufficiency of Lemma 2.2, $\xi=\frac{-\mathrm{d} \sqrt{\mathrm{N}}+\mathrm{i}}{\mathrm{c}}$ is an elliptic fixed point. Hence, by the necessity of Lemma 2.3 and by the equations (11) and (12), ξ can be written in the form

$$
\xi=\frac{-\mathrm{d} \sqrt{\mathrm{~N}}+\mathrm{i}}{\mathrm{c}}=\frac{(\alpha \gamma+\beta \delta) \sqrt{\mathrm{N}}+\mathrm{i}}{\gamma^{2}+\delta^{2} \mathrm{~N}}
$$

or

$$
\xi=\frac{-\mathrm{d} \sqrt{\mathrm{~N}}+\mathrm{i}}{\mathrm{c}}=\frac{(\alpha \gamma+\beta \delta) \sqrt{\mathrm{N}}+\mathrm{i}}{\gamma^{2} \mathrm{~N}+\delta^{2}}
$$

Comparing the imaginary parts, we see that $\mathrm{c}=\bar{x}^{2}+$ $N y^{2}$ for some integers x , y with $(\mathrm{x}, \mathrm{y})=1$.

Remark 2.6: Notice that if $d^{2} N+1 \equiv 0(\bmod c)$, then clearly -N is a quadratic residue $\bmod \mathrm{c}$.

For the converse of Theorem 2.5, we have the following result.

Theorem 2.7: If $c=x^{2}+N y^{2}$ with $(x, y)=1$, then there exists an integer d such that $d^{2} N \equiv-1(\bmod c)$ and c is a quadratic residue $\bmod \mathrm{N}$.

Proof: It must be $(x, N)=1$, otherwise it would be (c, $N) \neq 1$. Since $(x, y)=1$, we have $(x, y N)=1$. Then there exist integers a and b so that $a y N-b x=1$. Let

$$
\begin{equation*}
\mathrm{d}=\mathrm{ax}+\mathrm{by} \tag{13}
\end{equation*}
$$

It can be easily checked that

$$
\mathrm{d}^{2} \mathrm{~N}+1=\left(\mathrm{x}^{2}+\mathrm{Ny}^{2}\right)\left(\mathrm{a}^{2} \mathrm{~N}+\mathrm{b}^{2}\right)
$$

That is, we have $d^{2} N \equiv-1(\bmod c)$. Clearly, c is a quadratic residue $\bmod N$ since $c=x^{2}+N y^{2}$.

Remark 2.8: In Theorem 2.7, we can not guarantee that $-\frac{d \sqrt{N}}{c}$ is a finite \sqrt{N}-fraction everywhen.

REFERENCES

1. Hecke, E., 1936. Über die bestimmung Dirichletscher reihen durch ihre funktionalgleichung, Math. Ann. 112: 664-699.
2. Lyndon, R.C. and J.L. Ullman, 1968. Pairs of real 2×2 matrices that generate free products, Michigan Math. J., 15: 161-166.
3. Yilmaz Özgür, N. and I.N. Cangül, 2002. On the group structure and parabolic points of the Hecke group $H(\lambda)$, Proc. Estonian Acad. Sci. Phys. Math., 51: 35-46.
4. Fine, B., 1977. A note on the two-square theorem, Canad. Math. Bull., 20: 93-94.
5. Kern-Isberner, G. and G. Rosenberger, 1984. A note on numbers of the form $n=\mathrm{x}^{2}+\mathrm{Ny}^{2}$, Arch. Math. (Basel) 43: 148-156.
6. Rosen, D., 1954. A class of continued fractions associated with certain properly discontinuous groups, Duke Math. J., 21: 549-563.
7. Hutchinson, J.I., 1902. On a class of automorphic functions, Trans. Amer. Math. Soc., 3: 1-11.
8. Young, J., 1904. On the group of sign (0,$3 ; 2,4$, $8)$ and the functions belonging to it, Trans. Amer. Math. Soc., 5: 81-104.
9. Yilmaz Özgür, N., On the numbers of the form $n=$ $x^{2}+N y^{2}$ and the Hecke groups $H(\sqrt{N})$, submitted.
10. Schmidt, T.A. and M. Sheingorn, 1995. Length spectra of the Hecke triangle groups, Math. Z., 220: 369-397.
11. Yilmaz Özgür, N., 2006. Principal congruence subgroups of Hecke Groups $H(\sqrt{q})$, Acta Math. Sin. (Engl. Ser.) 22: 383-392.
12. Cox, D.A., 1989. Primes of the form $x^{2}+N y^{2}$, John Wiley and Sons, Inc., New York.
