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On Generalized Recurrent Kenmotsu Manifolds
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Abstract: We study on generalized recurrent, generalized Riccirecurrent and generalized concircular
recurrent Kennotsu manifolds.
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INTRODUCTION

A Riemannian manifold (M", g) is called generalized recurrent [I] if its curvature tensor R satisfies the
condition

(VxR)(Y,Z)W = a(X)R(Y,Z)W +B(X)[g(Z,W)Y — g(Y,W)Z], (1

where, o and B are two 1-forms, B is non-zero and these are defined by:
a(X)=g(X,A), B(X) =g(X,B) (2)

and A, B are vector fields associated with 1-forms o and B, respectively.
A Riemannian manifold (M", g) is called a generalized Ricci-recurrent [1] if its Ricci tensor S satisfies the
condition

(VxS)(Y,2) = a(X)S(Y,2) + (n = DB(X)g(Y.Z), 3)

where, o and 3 are defined as in (2).
A Riemannian manifold (M", g) is called generalized concircular recurrent if its concircular curvature tensor

C[2]

r
(n—1)

C(X,Y)Z=R(X,Y)Z- (e(Y, )X -g(X,2)Y) 4)
n

satisfies the condition
(V, O(Y.2)W = a(X)C(Y,Z)W +B(X)[(Z,W)Y —g(Y,W)Z], )

[3], where a and B are defined as in (2) and r is the scalar curvature of (M", g).

In 4], Q. Khan studied on generalized recurrent and generalized Riccirecurrent Sasakian manifolds. In this
study, we consider generalized recurrent and generalized Riccirecurrent Kenmotsu manifolds. We also consider
generalized concircular recurrent Kenmotsu manifolds. The paper is organized as follows: In Section 2, we give a
brief account of Kenmotsu manifolds. In Section 3, we find the characterizations of generalized recurrent,
generalized Riccirecurrent and generalized concircular recurrent Kenmotsu manifolds.
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KENMOTSU MANIFOLDS

Let M be an almost contact manifold [5] equipped with an almost contact metric structure (o, &, 1, g) consisting
ofa (1, 1) tensor field ¢, a vector field &, a 1 -form 1 and a compatible Riemannian metric g satisfying

P’=-I1+n®E N®=1, ¢&=0, Nop=0, (6)
g2(X,Y) =g(0X, oY) + n(Xn(Y), 7

for all X, Yey(M). An almost contact metric manifold M is called a Kenmotsu manifold if it satisfies [6]
(Vx@)Y = g(@X,Y)E-n(Y)eX, X,YexM), )
where, V is Levi-Civita connection of the Riemannian metric g. From the above equation it follows that
V& =X-n(X)E, (10)
(Vi)Y =g(X,Y) —n(X)n(Y). (11)
Moreover, the curvature tensor R and the Ricci tensor S satisfy [6]
8(X,6)= (1-n)n(X), (12)
R(EX)Y =n(V)X —g(X,Y)g, (13)
where, n = 2m + 1. Kenmotsu manifolds have been studied various authors. For example see [7, 8, 9, 10, 11, 12].

RESULTS

In this section, our aim is to find the characterizations of Kenmotsu manifolds which are generalized recurrent,
generalized Ricctrecurrent and generalized concircular recurrent.

Theorem 3.1: Let (M", g) be a generalized recurrent Kenmotsu manifold. Then o = B.

Proof: Assume that (M", g) be a generalized recurrent Kenmotsu manifold. Then the curvature tensor of (M", g)
satisfies the condition (1) for all vector fields X, Y, Z, W. Putting X =Y = & in (1) we have:

(VxR)(E,2)E = a(X)R(E Z)E +B(X)[M(Z)E-Z]. (14)
It is also well-known that:
(VxR)(E,Z)E =V RE 2)E-R(V(EZ)E —R(E,VZ)E-R(EZ)VE 15)
Then in view of (10) the equation (15) can be written as:
(VxR)E,2)E=VRE Z2)E-R(X,Z)E+n(X)R(E,Z)E —R(§, V4 2)E-R(§ D)X+ N(X)R(E,Z)E (16)
Hence by the use of (11) and (13) in (16) it can be easily seen that:
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(VxR)(E,2)E =0. (17)
Therefore from the equality of left hand sides of the equations (14) and (17) we have:
a(X)R(E,2)E+PX)[M(Z)E-Z]=0. (18)
So by the use of (13) in (18) we get:
[a(X) - BX)][M(Z)E-Z] =0,
which implies that a(X) = B(X) for any vector field X. This proves the theorem.

Theorem 3.2: Let (M", g) be a generalized recurrent Kenmotsu manifold. Then the scalar curvature r of (M", g) is
related to

n(A)r=(1-n)[(n-2)n(B)+2n(A)]. (19)

Proof: Suppose that (M", g) is a generalized recurrent Kenmotsu manifold. Then by the use of second Bianchi
identity and (1) we have:

a(X)R(Y,Z)W +B(X)[&(Z,W)Y - g(Y,W)Z]
+a(Y)R(Z, X)W + B(Y)[g(X,W)Z — g(Z,W)X] (20)
+o(Z)R(X, Y)W + B(2)[g(Y, W)X - g(X,W)Y]=0.
So by a suitable contraction from (20) we get:
a(X)S(Z,W) +(n - DB(X)g(Z, W)+ R(Z,X,W,A) + B(Z)g(X,W) - BX)&(Z, W) —a(Z)S(X, W)+ (1 -n)B(Z)g(X,W) = 0. (21)
Contracting (21) with respect to Z, W we find:
ro(X)+ (n — 1)(n — 2)BX) — 28(X,A) = 0. (22)
Hence putting X = & in (22) we obtain (19). Our theorem is thus proved.

Theorem 3.3: Let (M", g) be a generalized Riccirecurrent Kenmotsu manifold. Then a. = .

Proof: Assume that (M", g) is a generalized recurrent Kenmotsu manifold. Then the Ricci tensor S of (M", g)
satisfies the condition (3) for all vector fields X, Y, Z. Taking Z = & in (3) we have:

(VxS)Y, &) = (1-n)[a(X) - BX)In(Y). (23)
On the other hand, by the definition of covariant derivative of S it is well-known that:
(VxS)(Y,8) =V, S(Y,£)-S(V,Y,E)-S(Y,V,&). (24)
Then in view of (10) and (12) the equation (24) can be written as:
(VxSXY,8) =1 -n)Vy n(Y) - 1 —n)n(V, Y) - S(X,Y) + (1 —n) (X)) n(Y). (25)

So using (11) we get:
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(ViS)(Y,8) =(1-n)g(X,Y) - S(X.Y). (26)
From the equality of the left hand sides of the equations (23) and (26) we can write:
(1 -m)[a(X)-BX)M(Y) =(1-n)g(X,Y) - S(X,Y). 27)
Hence taking Y =& in (27) and using (12) we obtain o.(X) = B(X) for any vector field X. This proves the theorem.
Theorem 3.4: Let (M", g) be a generalized concircular recurrent Kenmotsu manifold. Then the condition

1
n(n-1)

r
n(n-1)

a(X)[l + ]— B(X)— X[r]=0 (28)

holds for any vector field X, where X[r] denotes the covariant derivative of the scalar curvature r with respect to the
vector field X.

Proof: Suppose that (M", g) is a generalized concircular recurrent Kenmotsu manifold. Then the concircular

curvature tensor C of (M", g) satisfies the condition (5) for all vector fields X, Y, Z, W. Taking Y = W = & in (5) we
have:

(V4 O)(&,2)& = a(X)C(E,2)E + BX)N(2)E - Z].

So using (4) and (13) this gives us:

(VxO)(E,Z)E =[aX)(1 + r_l)) —BX)N[Z-n(Z)E]. 29

n(n

On the other hand, from the definition of covariant derivative, it is well-known that:

( Oz (.20 T .25y C, D C.2) .

X

32






