Synthesis and Anti-Tumor Evaluation of Some New Tranilast Analogous

A.A. Hamed, A.K. El-Ziaty, A.A. Abdalha and S.A. Shiba Abdul-Hafeedh Ali Abdullha

Chemistry Department, Faculty of Science, Ain Shams University, Abbassia 11566, Cairo, Egypt

Abstract

Ring opening reactions of benzoxazinones ($6 \mathrm{a}, \mathrm{b}$) with oxygen, nitrogen and carbon nucleophiles gave the corresponding benzoates (7), benzamides (8), acrylamides (9 and 11) and the cyanoacetamides (10 a,b). Condensation of compounds (6) with amines under drastic conditions, Yield:ed the quinazolinone derivatives (13). When reacted with thiosemicarbazide and/or phenyl thiourea, compound 6 b gave the triazole (14) and / or pyrimidoquinazolinone (15). Some of the new compounds (7a, 7b, 7c, 8b, 8d, 9, 11, 13a, 13b, 14 and 15) were tested for cytotoxic activity using tumor cell line (MCF7).

$\underline{\text { Key words: Tranilast • Quinazolinones • Antitumor • MCF7 (Breast Carcinoma Cell Lin) }}$

INTRODUCTION

Tranilast (1) is an antiallergic agent that blocks the release of chemical mediators, such as histamine and leukotrienes from mast cells [1-6]. Tranilast (1) possesses antitumor effects (i.e it potentiated the inhibition of the tumor growth induced by several anticancer drugs [7, 8]. It possesses pharmacological approaches to cestenosis preventation [9] and for therapeutic interventions in heart failure [10]. Amides (2) (analogues of Tranilast), showed characteristic activities against smooth muscle cell proliferation [11].

On the other hand, benzoxazinones and quinazolinones (3) (prepared by cyclization of (1) and/or (2)), still have pronounced characteristic biological and pharmacological activities. [12-16].

RESULTS AND DISCUSSION

The reported biological and pharmacological activities of benzoxazines initiated our interest in studying the behavior of this ring system towards a variety of nucleophiles. The desired benzoxazinones (6a,b) were prepared by condensation of 2-propenoyl chloride derivatives $(4 \mathrm{a}, \mathrm{b})$ with anthranilic acid or its 5-bromo derivative in pyridine or triethylamine/toluene via the intermediacy of benzoic acid derivatives (5a,b) [17-20]. The structures of 5 b and 6 b were established by comparison with the authentic samples [20]. Scheme 1.

The expected 2-acrylamido benzoates (7a-c) were obtained by treatment of benzoxazinones ($6 \mathrm{a}, \mathrm{b}$) with ethanol and/or 1-butanol in presence of pyridine (Scheme 2).

Ring opening of $6 \mathrm{a}, \mathrm{b}$ with primary amines, such as benzylamine, ethanolamine and 4-methoxyaniline, in dioxane gave the corresponding benzamide derivatives ($8 \mathrm{a}-\mathrm{f}$), while with secondary amines, such as piperidine, (6a) gave a mixture of the acrylamide (9) and cyanoacetamide (10a) while 6 b gave 10 b only as a sole product (Scheme 2).

Condensation of 6 b with malononitrile in presence of pyridine afforded a mixture of the acrylamide (11) and 2-(3,4-dimethoxyphenylmethylene) malononitrile (12) [21], which was identified authentically by condensation of 3,4dimethoxybenzaldehyde with malononitrile in piperidine (Scheme 2).

Scheme 1:

Fusion of $6 \mathrm{a}, \mathrm{b}$ with ammonium acetate and/or aromatic amines, like, 4-methoxyanilineor 3-chloroaniline gave the corresponding quinazolinones (13a-f) (Scheme 2). Furthermore, fusion of 6 b with thiosemicarbazide in neat at $180^{\circ} \mathrm{C}$ gave the triazole derivative (14) (Scheme 2), via ring opening of benzoxazinone ring, followed by ring closure at the hydrazide moiety.

On the other hand, refluxing 6 b with phenyl thiourea in pyridine, Yield:ed the pyrimidoquinazolinone (15)
(Scheme 2), through the ring opening-ring closure process, followed by addition on the á,â-unsaturated nitrile with subsequent dehydrogenation of the pyrimidine thione moiety.

Antitumor Activity: The tranilast and its analogous were tested for cytotoxic activity against MCF7 (Breast Carcinoma Cell Lin), Human tumor cell lines were obtained in liquid nitrogen $\left(-180^{\circ} \mathrm{C}\right)$ from the American Type

Table 1: The effect of the tranilast and its analogous on MCF7 (Breast Carcinoma Cell Line)

Compound Number	IC $50 \mathrm{ug} / \mathrm{ml}$
7 a	15.2
7 b	7.08
7 c	8.76
8b	9.90
8d	7.95
9	9.22
11	8.17
13 a	7.70
13 b	4.19
14	9.47
15	7.70
Tranilast	11.7

IC50: the inhibitory concentration of compound which reduce the survival to 50%.

Culture Collection. The tumor cell lines were maintained in the National Cancer Institute, Cairo, Egypt. All tested compounds were proven to have cytotoxic activity against MCF7 (Breast Carcinoma Cell Line).

The IC50 of the tested compounds are listed in table 1.

MATERIAL AND METHOD

- Tumer: Human tumor cell
- MCF7 (Breast Carcinoma Cell Line)

Measurement of Potential Cytotoxicity by SulfoRodamine B (SRB) Assay: Potential cytotoxicity of the compound(s) was tested using the method of Skehan et al. [22] and Hiromu et al. [23]:

- Cells were plated in 96-multiwell plate (104 cells/well) for 24 hrs before treatment with the compounds to allow attachment of cell to the wall of the plate.
- Different concentrations of the compound under test $(0,1,2.5,5$ and $10 \mu \mathrm{~g} / \mathrm{ml})$ were added to the cell monolayer triplicate wells were prepared for each individual dose.
- Monolayer cells were incubated with the compounds for 48 hrs at $37^{\circ} \mathrm{C}$ and in atmosphere of $5 \% \mathrm{CO}_{2}$.
- After 48 hrs, cells were fixed, washed and stained with Sulfo-Rhodamine-B stain.
- Excess stain was washed with acetic acid and attached stain was recovered with Tris EDTA (Ethylene Diamine Tetra Acetic acid) buffer.
- Color intensity was measured in an ELISA (Enzyme Linked Immuno Sorbent Assay) reader.
- The relation between surviving fraction and drug conc. is plotted to get the survival curve of each tumor cell line after the specified compound.

CONCLUSION

The antitumor activity results indicated that, all the eleven derivatives showed antitumor activity against tested MCF7 (Breast Carcinoma Cell Line) but with varying intensities in comparison to the standard drug: Tranilast. Moreover nine compounds showed higher cytotoxic activity than Tranilast and only two compounds showed lower cytotoxic activity than Tranilast, compounds 7 b and13a showed the highest cytotoxic activity (IC50 equals $7.7 \mathrm{ug} / \mathrm{ml}$).

ACKNOWLEDGEMENT

Our deep regards are to National Cancer Institute, Cairo, Egypt for the fruitful cooperation in the evaluation of anti-tumor activity of the synthesized compounds.

The survival curves of each tumor cell line after the specified compound.

Experimental: Melting points were taken on Griffin and Geory melting point apparatus and are uncorrected. IR spectra were recorded on Pye Unicam SP 1200 spectrophotometer using the KBr wafer technique. ${ }^{1} \mathrm{H}$ NMR spectra were determined on Varian Gemini 300 MHz using TMS as internal standard. All chemical shifts (ä) are expressed in ppm. And the coupling constants are in Hz . All the NH or OH protons are exchangeable on addition of $\mathrm{D}_{2} \mathrm{O}$. The mass spectra were determined using MP model MS-5988 and Shimadzu single focusing mass spectrometer (70 eV). Elemental analyses were investigated by Elemental analyzer Vario EL III.

DRUG CYTOTOXICITY

CONC. Ug/ml	MCF7-9
0.000000	1.000000
5.000000	0.360228
12.500000	0.234811
25.000000	0.218605
50.000000	0.302877
HCF7	

DRUG CYTOTOXICITY

CONC:ug'ml	MCF7-15
0.000000	1.000000
5.000000	0.531710
12.500000	0.336731
25.000000	0.129171
50.000000	0.208280

MCF

DRUG CYTOTOXICITY

CONC.ughinl	MCF7-7a
0.000000	1.000000
5.000000	0.728563
12.500000	0.540570
25.000000	0.332888
50.000000	0.202308

MCF7

DRUG CYTOTOXICITY

CONC.ughl	MCF7-7c
0.0000000	1.0000000
5.000000	0.850986
12.500000	0.172867
25.0000000	0.224425
50.000000	0.247776

MCF

DRUG CYTOTOXICITY

CONC:ug/ml	MCF7-13a
0.000000	1.000000
5.000000	0.633846
12.500000	0.274426
25.000000	0.193874
50.000000	0.281388
MCF7	

MCF7

DRUG CYTOTOXICITY

CONG.ug/ml	MCF7-13b
0.000000	1.000000
5.000000	0.407678
12.500000	0.396154
25.000000	0.130489
50.000000	0.219927

MEF7

DRAG CYTOTOXICITY

Conc ughnl	MCF -11
0.000	1.000000
5.000	0.650244
12500	0.306757
25.000	0.157717
50.000	0.117326
MCF7	

DRUG CYTOTOXICATY

Conc ugfinl	MC.7-14
0.000	1.000000
5.000	0.749180
12500	0.344474
25.000	0.164391
50.000	0.128677

MCF

DRUG CYTOTOXICATY

Conc ugfill	MCF7-Tr
0.000	1.000000
5.000	0.763049
12500	0.479995
25.000	0.153877
50.000	0.129343

MCFI

DRAG CYTOTOXICITY

Conc ugml	MC.7.7b
0.000	1.000000
5.000	0603830
12500	0.245503
25.000	0.093293
50.000	0.122168

MCFI

DRUG CYTOTOXCITY

Conc ugiml	MCF7-8b
0.000	1.000000
5.000	0.780073
12500	0.358157
25.000	0.114322
50.000	0.146366

MCF

DRUG CYTOTOXICATY

Conc ugiml	MCF7-8d
0.000	1.000000
5.000	0.616998
12500	0.330454
25.000	0.123004
50.000	0.164726

MCF?

3-Aryl-2-cyano-2-propenoyl chlorides $4 a, b$ were prepared following the procedure described in the literature [24].
(E)-5-bromo-2- (2-cyano-3- (4-methoxyphenyl) acrylamido) benzoic acid(5a): A mixture of 5bromoanthranilic acid ($0.01 \mathrm{~mol}, 2.16 \mathrm{~g}$) and 3-(4-methoxyphenyl)-2-cyano-2-propenoyl chloride (0.01 mol , 2.51 g) in dry toluene (50 mL) and pyridine ($2-3$ drops) was refluxed for 5 hrs . The precipitate formed after concentration of solvent was collected by filtration and recrystallized from ethanol to give 5 a . Colour: Green, M.P.: 288-290, Yield: 90 \%, FT-IR (KBr, cm^{-1}): 3117 (NH,OH), 2207 (C=N), 1690,1666 (C=O)., ${ }^{1} \mathrm{H}$ NMR (DMSO-d6,) 12.08 $(\mathrm{s}, 1 \mathrm{H}, \mathrm{COOH}), 8.56(\mathrm{~S}, 1 \mathrm{H}, \mathrm{NH}), 8.35(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}), 8.11-$ $7.15(\mathrm{~m} 7 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 3.87\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$. Anal. Calced. for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{BrN}_{2} \mathrm{O}_{4}:(401.20) \mathrm{C}, 53.89 ; \mathrm{H}, 3.27$; N. 6.98 Found: C,53.88; H,3.27; N, 6.97.
(E)-2-(6-Bromo-4-oxo-4H-benzo[d][1,3]oxazin-2-yl)-3-(4-methoxyphenyl)-acrylonitrile (6a): The benzoic acid derivative (5a) ($0.01 \mathrm{~m} 01,4.01 \mathrm{~g}$) was wetted by acetic anhydride $(10 \mathrm{~mL})$ and the mixture was heated on water bath for 2 hrs . The precipitate formed after concentration of solvent was collected and recrystallized form benzene to give 6a. Colour: pale Yellow, M.P.: 278-280, Yield: 80%, FT-IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): $2222(\mathrm{C}=\mathrm{N}), 1772(\mathrm{C}=\mathrm{O}),{ }^{1} \mathrm{H}$ NMR (DMSO-d6,) 8.56-8.23 (m, 3H, Ar-H), 8.17 (s, 1H, C=CH), 7.63-7.18 (m, 4H, Ar-H), 3.89 (s, 3H, OCH 3). MS: 382 [M-1] ${ }^{+}$(60), 384 (50), $355[\mathrm{M}+1]^{+}$(14.7), 357 (1 1), 303 (7), 227 (14.4), 225 (19.6), 199 (19.4), 197 (23), 170 (98.5), 168 (100), 158 (33.6), 157 (13.2), 146 (9.6). Anal. Calced. for $\mathrm{C}_{18} \mathrm{H}_{11} \mathrm{BrN}_{2} \mathrm{O}_{3}$: $(383.20) \mathrm{C}, 56.42 ; \mathrm{H}, 2.89 ; \mathrm{N}, 7.31$ Found: C,56.44; H,2.90;N, 7.30

General method for synthesis of 7a-c: Refluxing of 6 a $(0.01 \mathrm{~mol}, 3.83 \mathrm{~g})$ and / or $6 \mathrm{~b}(0.01 \mathrm{~mol}, 3.34 \mathrm{~g})$, in ethanol and/or n-butanol (20 mL) with few drops of pyridine for 4 hrs . After cooling, the precipitate was collected by filtration and recrystallised from a suitable solvent to give $7 \mathrm{a}-\mathrm{c}$.
(E)-Ethyl 5-bromo-2- (2-cyano-3- (4-methoxyphenyl) acrylamido)benzoate (7a): Colour: Yellow, M.P.: 260-262, Yield: 45 \%, Recrystallizied from: ethanol FT-IR (KBr , $\left.\mathrm{cm}^{-1}\right)$: $3212(\mathrm{NH}), 2215(\mathrm{C}=\mathrm{N}), 1755,1681(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}$ NMR (DMSO-d6,): 11.41 (s, 1H, N H), 8.55-8.34 (m, 3H, Ar-H), $8.32(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 7.18-7.14(\mathrm{~m}, 4 \mathrm{H}, \operatorname{Ar}-\mathrm{H}), 4.37(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=$ $\left.7.2, \mathrm{OCH}_{2}\right), 3.87\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 1.35\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=6.9, \mathrm{CH}_{3}\right)$.

MS: 428 (22), 430 (24), 401 (15.3), 399 (21.2), 186 (100), 158 (20).). Anal. Calced. for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{BrN}_{2} \mathrm{O}_{4}$: (429.26) C, 55.96; H,3.99; N, 6.53 Found: C,55.99; H,3.97; N, 6.52
(E)-Ethyl 2-(2-cyano-3-(3,4-dimethoxyphenyl) acrylamido)benzoate (7b): Colour: Yellow, M.P.: 140-141, Yield: 50 \%, Recrystallizied from: toluene FT-IR (KBr, $\left.\mathrm{cm}^{-1}\right): 3163(\mathrm{NH}), 2205(\mathrm{C}=\mathrm{N}), 1769,1677(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}$ NMR (DMSO-d6,) 11.51 (s, 1H, NH), 8.48-8.35 (m, 3H, J = 8.1, Ar$\mathrm{H}), 8.15(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 7.77-7.66(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 4.37(\mathrm{q}, 2 \mathrm{H}$, $\left.\mathrm{J}=7.2, \mathrm{CH}_{2}\right), 3.87\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{OCH}_{3}\right), 1.35\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=6.9, \mathrm{CH}_{3}\right)$. Anal. Calced. for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{5}$: $(380.39) \mathrm{C}, 66.31 ; \mathrm{H}, 5.30 ; \mathrm{N}$, 7.36, Found: C, 66.35 ; H,5.30; N, 7.35
(E)-Butyl 5-bromo-2- (2-cyano-3- (4-methoxyphenyl) acrylamido)benzoate (7c): Colour: Yellow, M.P.: 258-260, Yield: 55 \%, Recrystallizied from: benzene FT-IR (KBr, $\left.\mathrm{cm}^{-1}\right)$: $3230(\mathrm{NH}), 2209(\mathrm{C}=\mathrm{N}), 1773,1680(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}$ NMR (DMSO-d6,) 11.4 (s, 1H, NH), 8.45-8.34 (m, 3H, Ar- H), 8.11 $(\mathrm{s}, 1 \mathrm{H},=\mathrm{CH}), 8.04-7.14(\mathrm{~m}, 4 \mathrm{H}$, Ar- H), $4.34(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.3$, $\left.\mathrm{OCH}_{2}\right), 3.87\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 1.76-1.69\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.67-$ $1.37\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.31\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.2, \mathrm{CH}_{3}\right)$. Anal. Calced. for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{BrN}_{2} \mathrm{O}_{4}:(457.32) \mathrm{C}, 57.78 ; \mathrm{H}, 4.63 ; \mathrm{N}, 6.13$ Found: C,57.79; H,4.65; N, 6.15

General method for synthesis 8a-f: A mixture of 6a (0.01 $\mathrm{mol}, 3.83 \mathrm{~g}$) and/or $6 \mathrm{~b}(0.01 \mathrm{~mol}, 3.34 \mathrm{~g})$ and aromatic amines $(0.01 \mathrm{~mol})$ namely benzylamine $(1.07 \mathrm{~g})$, ethanolamine $(0.61 \mathrm{~g})$ or 4-methoxyaniline (1.23 g) in dioxane (50 mL) was refluxed for 5 hrs . The precipitate formed after concentration of the solvent under reduced pressure was collected by filtration and crystallized from a suitable solvent to give 8a-f.
(E)-N-Benzyl-5-bromo-2-(2-cyano-3-(4-methoxyphenyl) acrylamido)benzamide (8a): Colour: Yellow, M.P.: 220221, Yield: 60 \%, Recrystallizied from: benzene-ethanol mixture (1:1), FT-IR (KBr, cm^{-1}): 3445 (NH), 2206 ($\mathrm{C}=\mathrm{N}$), 1676,1632 (C=O). ${ }^{1} \mathrm{H}$ NMR (DMSO-d6,) 12.74 (s, 2H, NH), 8.46-8.23 (m, $3 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 8.03(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 7.52-7.36(\mathrm{~m}, 9 \mathrm{H}$, Ar- H), $4.05\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$. Anal. Calced. for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{BrN}_{3} \mathrm{O}_{3}$: (490.35) C, 61.24; H,4.11; N, 8.57 Found: C,61.22; H,4.10; N, 8.58
(E)-N-Benzyl-2-(2-cyano-3-(3,4-dimethoxyphenyl) acrylamido)benzamide (8b): Colour: Brown, M.P.: 252253, Yield: 65%, Recrystallizied from: petroleum ether 80100 FT-IR (Kbr, cm^{-1}): $3279(\mathrm{NH}), 2202(\mathrm{C}=\mathrm{N})$, 1679,1634 (C=O). ${ }^{1}$ H NMR (DMSO-d6,) 12.31 (s, 1H, NH),
$9.38(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 8.31(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 7.907 .70(\mathrm{~m}, 3 \mathrm{H}, \mathrm{J}=7.8$, Ar-H), 7.27-7.36(m, 4H, Ar-H), 7.18-7.25 (m, 5H, C C_{6}), 4.52 (s, $2 \mathrm{H}, \mathrm{CH}_{2}$), $3.86\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{OCH}_{3}\right)$. Anal. Calced. for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{4}$: (441.48) C, 70.73; H,5.25; N, 9.25 Found: C,70.74; H,5.26; N, 9.51
(E)-5-Bromo-2-(2-cyano-3-(4-methoxyphenyl) acrylamido)-N-(2-hydroxyethyl)-benzamide (8c): Colour: Yellow, M.P.: 278-280, Yield: 60 \%, Recrystallizied from: ethanol FT-IR (KBr, cm^{-1}): 3522, $3288(\mathrm{NH}), 2212(\mathrm{C}=\mathrm{N})$, 1688, 1638 (C=O). 'H NMR (DMSO-d6,) 12.283 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$), $8.932(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 8.43-7.16(\mathrm{~m}, 8 \mathrm{H}, 7 \mathrm{Ar}-\mathrm{H}+1 \mathrm{C}=\mathrm{CH}), 4.764$ (s, $1 \mathrm{H}, \mathrm{OH}$), $3.879\left(\mathrm{~s}, 7 \mathrm{H}, \mathrm{OCH}_{3}+2 \mathrm{CH}_{2}\right) . \mathrm{MS}:[\mathrm{M}+1]^{+} 445$ (5.8), $[\mathrm{M}-1]^{+} 443$ (6.2), 385 (17.3), 383 (14.7), 186 (100), 187 (15.4). Anal. Calced. for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{BrN}_{3} \mathrm{O}_{4}$: (444.28) C,54.07; H,4.908; N, 9.46 Found: C,54.12; H,4.10; N, 9.45
(E)-2-(2-Cyano-3-(3,4-dimethoxyphenyl)-acrylamido)- N -(2-hydroxyethyl)-benzamide (8d): Colour: Brown, M.P.: 256-258, Yield: 70 \%, Recrystallizied from: ethanol FT-IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): $3285(\mathrm{NH}), 2204(\mathrm{C}=\mathrm{N}), 1676,1636(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}$ NMR (CDCl 3) $12.147(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}), 8.69-8.29(\mathrm{~m}, 7 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, 7.841(s, 1H, OH), $7.18(\mathrm{~s}, 1 \mathrm{H}=\mathrm{C} \mathrm{H}), 3.931\left(\mathrm{~s}, 6 \mathrm{H} 2 \mathrm{OCH}_{3}\right)$ 3.96-3.88(m, $\left.4 \mathrm{H} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$. MS: $395\left(\mathrm{M}^{+}, 25.3\right), 364[\mathrm{M}-1]^{+}$ (3.4), 335 (45.2), 333 (14.6), 307 (15.8), 216 (100), 117 (19). Anal. Calced. for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{BrN}_{3} \mathrm{O}_{5}$: (395.41) C, 63.79; $\mathrm{H}, 5.35$; N, 10.63 Found: C,63.80; H,5.34; N, 10.61
(E)-5-Bromo-2-(2-cyano-3-(4-methoxyphenyl) acrylamido)- N -(4-methoxyphenyl)-benzamide (8e): Colour: Yellow, M.P.: 280-281, Yield: 55 \%, Recrystallizied from: 1,4dioxane, FT-IR (KBr, cm^{-1}): $3290(\mathrm{NH}), 2203$ $(\mathrm{C}=\mathrm{N}), 1687,1638(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}$ NMR (DMSO-d6, $11.59(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{NH}), 10.50(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 8.32(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 8.31-8.10(\mathrm{~m}$, $3 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.807 .62(\mathrm{~m}, 8 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 3.77\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{OCH}_{3}\right)$. Anal. Calced. for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{BrN}_{3} \mathrm{O}_{4}$: $(506.35) \mathrm{C}, 59.30 ; \mathrm{H}, 3.98$; N, 8.30 Found: C,59.32; H,3.99; N, 8.31
(E)-2-(2-Cyano-3-(3,4-dimethoxyphenyl)acrylamido)- N -(4-methoxyphenyl)-benzamide (8f): Colour: Yellow, M.P.: 282-283, Yield: 75 \%, Recrystallizied from: 1,4dioxane FTIR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): $3277(\mathrm{NH}), 2201(\mathrm{C}=\mathrm{N}), 1681,1637(\mathrm{C}=\mathrm{O})$. ${ }^{1} \mathrm{H}$ NMR (DMSO-d6,) 11.69 (s, 1H, N H), 10.42 (s, 1H, N H), $8.40(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.4, \mathrm{Ar}-\mathrm{H}), 8.31(\mathrm{~s}, 1 \mathrm{H},=\mathrm{C} \mathrm{H}), 7.92(\mathrm{~d}, 1 \mathrm{H}$, $\mathrm{J}=7.8, \operatorname{Ar}-\mathrm{H}), 7.75(\mathrm{~s}, 1 \mathrm{H}, \operatorname{Ar}-\mathrm{H}), 7.59-7.69(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, $7.31(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=7.2$, Ar-H), 7.18 (d, 1H, J = 8.7, Ar-H), 6.95 (d, $1 \mathrm{H}, \mathrm{J}=8.7, \mathrm{Ar}-\mathrm{H}$), $3.90\left(\mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{OCH}_{3}\right) . \mathrm{MS}: \mathrm{M}^{+}$not observed, 407 (7), 335 (9), 188 (4), 123 (100), 122 (13). Anal. Calced. for $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{5}$: (457.48) C, 68.26; H,5.07; N, 9.19 Found: C,68.28; H,5.08; N, 9.18

Synthesis of 9, 10a and 10b: A mixture of $6 \mathrm{a}(0.01 \mathrm{~mol}$, $3.83 \mathrm{~g})$ and $/$ or $6 \mathrm{~b}(0.01 \mathrm{~mol}, 3.34 \mathrm{~g})$ and piperidine $(0.01$ $\mathrm{mol}, 0.85 \mathrm{~g}$) in THF (50 mL) was refluxed for 5 hrs . The precipitate formed after concentration of the solvent was collected by filtration and crystallized from a suitable solvent to give $9,10 \mathrm{a}$ and 10 b respectively.
(E)-N-(4-Bromo-2-(piperidine-1-carbonyl)phenyl)-2-cyano-3-(4-methoxyphenyl)-acrylamide (9): Colour: Yellow, M.P.: 226-227, Yield: 60 \%, Recrystallizied from: benzene FT-IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$: $3448(\mathrm{NH} / \mathrm{OH}), 2206(\mathrm{C}=\mathrm{N})$, 1675 (C=O). ${ }^{1} \mathrm{H}$ NMR (300MHz,DMSO-d6,) 12.6 (s,1H, N $\mathrm{H}), 8.47-8.11(\mathrm{~m} 3 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 8.11(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 8.03-7.83(\mathrm{~m}$, $4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 3.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.00\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{2}\right)_{2}\right), 1.65-$ $1.54\left(\mathrm{~m}, 6 \mathrm{H}, 3 \mathrm{C} \mathrm{H}_{2}\right)$. Anal. Calced. for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{BrN}_{3} \mathrm{O}_{3}$: (468.34) C, 58.98; H,4.73; N, 8.97 Found: C,58.99; H,4.71; N, 8.96

N-(4-Bromo-2-(piperidine-1-carbonyl)phenyl)-2cyanoacetamide(10a): Colour: Yellow, M.P.: 190-191-280, Yield: 40 \%, Recrystallizied from: toluene, FT-IR (KBr, $\left.\mathrm{cm}^{-1}\right): 3350(\mathrm{NH}), 2200(\mathrm{C}=\mathrm{N}), 1686,1652(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}$ NMR (300MHz, DMSO-d6,) 12.73 (s, 1H, NH), 8.53-7.44 (m, 3H, Ar- H), 1.55-3.37 (m, 12H, C H2 CN and10H, Pip. H). Anal. Calced. for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{BrN}_{3} \mathrm{O}_{2}$: (350.21) C, 51.44; $\mathrm{H}, 4.60$; N, 12.00 Found: C,51.47; H,4.61; N, 12.02

2-Cyano-N-(2-(piperidine-1-carbonyl)phenyl)acetamide (10b): Colour: reddish Yellow, M.P.: 210-211, Yield: 55%, Recrystallizied from: toluene-ethanol moxture, FT-IR (KBr , cm^{-1}): $3395(\mathrm{NH}), 2205(\mathrm{C}=\mathrm{N}), 1638(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}$ NMR (300MHz,DMSO-d6,) 10 (s, 1H, NH), 7.77-7.30 (m, 4H, ArH), $3.31\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CN}\right), 3.01\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{2}\right)_{2}\right), 1.6(\mathrm{~m}, 6 \mathrm{H}$, $3 \mathrm{CH}_{2}$). MS: $272\left(2.7, \mathrm{M}^{+}+1\right), 187(21), 84(100), 158(20), 132$ (5), 119 (69). Anal. Calced. for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2}$: (271.31) C, 66.40; H,6.32; N, 15.49 Found: C,66.41; H,15.47; N, 8.96
(E)-2-Cyano-N-(2-(2,2-dicyanoacetyl)phenyl)-3-(3,4dimethoxyphenyl)acrylamide (11): A mixture of 6 b (0.01 $\mathrm{mol}, 3.34 \mathrm{~g}$) and malononitrile ($0.01 \mathrm{~mol}, 0.66 \mathrm{~g}$) in pyridine $(30 \mathrm{~mL})$ was refluxed for 5 hrs . After cooling, the reaction mixture was poured onto ice cold HCl , the precipitate formed was collected, dried and recrystallized from petrolume ether to give 11 .

Colour: Brown, M.P.: 280-281, Yield: 55 \%, FT-IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3269(\mathrm{NH}), 2205(\mathrm{C}=\mathrm{N}), 1631(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.\mathrm{d}_{6}-\mathrm{ä}\right) 10.33$ (s, 1H, NH), $8.90-7.14$ (m, $5 \mathrm{H}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$ $+1 \mathrm{H},=\mathrm{CH}), 4.02\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}(\mathrm{CN})_{2}\right), 3.82\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{OCH}_{3}\right)$. Anal. Calced. for $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{4}$: (400.39) C, 66.00; H,4.03; N , 13.99 Found: C,66.12; H,4.11; N, 13.97

General method for synthesis of 13a-f: A mixture of 6 a $(0.01 \mathrm{~mol}, 3.83 \mathrm{~g})$ and $/$ or $6 \mathrm{~b}(0.01 \mathrm{~mol}, 3.34 \mathrm{~g})$ and ammonium acetate ($0.04 \mathrm{~mol}, 3.08 \mathrm{~g}$), 4-methoxyaniline (0.01 $\mathrm{mol}, 1.23 \mathrm{~g}$) and/or 3-chloroaniline ($0.01 \mathrm{~mol}, 1.27 \mathrm{~g}$) was heated in neat for 3 hrs. After cooling, the reaction mixture triturated with hot water or diluted HCl and the precipitate separated was collected, dried and crystallized from a suitable to give 13a-f.
(E)-2-(6bromo-4-oxo-3,4-dimhydroquinazolin-2-yl)-3-(4- methoxyphenyl)acrylonitile (13a): Colour: Yellow,
M.P.: 292-293, Yield: 70 \%, Recrystallizied from: 1,4dioxane FT-IR (KBr, cm ${ }^{-1}$): 3445 (NH), 2206 (C=N), 1676 (C=O). ${ }^{1} \mathrm{H}$ NMR (300MHz,DMSO-d6,) 12.65 (s, 1H, NH), 8.393-8.17 (m, 7H, Ar-H), $7.15(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 3.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$. Anal. Calced. for $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{BrN}_{3} \mathrm{O}_{2}:(382.21) \mathrm{C}, 56.56 ; \mathrm{H}, 3.16 ; \mathrm{N}$, 10.99 Found: C,56.58; H,3.17; N, 10.89
(E)-3- (3,4-dimethoxyphenyl)-2- (4-0x0-3, 4dihydrquinazolin-2-yl)acrylonitrile (13b): Colour: Brown, M.P.: 170-172, Yield: 85%, Recrystallizied from: benzene FT-IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$: $3182(\mathrm{NH}), 2204(\mathrm{C}=\mathrm{N}), 1671$ (C=O). 'H NMR (300MHz,DMSO-d6,) 12.39 (s, 1H, NH), $8.40(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 8.11-6.9(\mathrm{~m}, 7 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 3.77$ (s, 6H, $2 \mathrm{OCH}_{3}$). Anal. Calced. for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{3}$: (333.30) C, 68.46; H,4.54; N, 12.61 Found: C,68.48; H,4.55; N, 12.60
(E)-2-(6-Bromo-3-(4-methoxyphenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)-3-(4-methoxyphenyl) acrylonitrile (13c): Colour: Brown, M.P.: 166-167, Yield: 70 \%, Recrystallizied from: toluene, FT-IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 2212 (C= N), 1687 (C=O). ${ }^{\text {' }} \mathrm{H}$ NMR (300MHz,DMSO-d6,) $8.34(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 8.00-6.76(\mathrm{~m}, 11 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 3.82(\mathrm{~s}, 6 \mathrm{H}, 2$ OCH_{3}). Anal. Calced. for $\mathrm{C}_{25} \mathrm{H}_{18} \mathrm{BrN}_{3} \mathrm{O}_{3}$: (488.33) C, 61.49; H,3.72; N, 8.60 Found: C,61.52; H,3.71; N, 8.58
(E)-3-(3,4-Dimethoxyphenyl)-2-(3-(4-methoxy-phenyl)-4-oxo-3,4-dihydro-quinazolin-2-yl)acrylonitrile (13d): Colour: Brown, M.P.: 180-181,, Yield:: 65 \%, Recrystallizied from: ethanol, FT-IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): $2208(\mathrm{C}=\mathrm{N}), 1685(\mathrm{C}=\mathrm{O})$. ${ }^{1} H$ NMR (300MHz, DMSO-d6,) 8.17 (s, 1H, $=\mathrm{CH}$), 7.92-6.87 (m, 11H, Ar-H), 3.85 (s, 9H, $3 \mathrm{OCH}_{3}$). MS: 439 (35.5, M ${ }^{+}$), 438[M-1](90), 413 (11.8), 332 (18.3), 302 (28), 251 (37.6), 188 (28), 137 (21), 107 (49.2), 77 (100). Anal. Calced. for $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{4}$: (439.46) C, 71.06; H,4.82; N, 9.65 Found: C,71.09; H,4.83; N, 9.55
(E)-2- (6-Bromo-3- (3-chlorophenyl) -4-oxo-3,4-dihydroquinazolin-2-yl)-3-(4-methoxyphenyl)acrylonitrile (13e): Colour: Brown, M.P.: 190-191, Yield:

60 \%, Recrystallizied from: methanol FT-IR (${\mathrm{KBr}, \mathrm{cm}^{-1} \text {): }}^{2}$ $2212(\mathrm{C}=\mathrm{N}), 1689(\mathrm{C}=\mathrm{O}) .{ }^{.}{ }^{\text {H NMR (300MHz,DMSO-d6, }}$ 8.244 (s, 1H, $=\mathrm{CH}$), 8.098-7.167 (m, 11H, Ar-H), 3.887 (s, 3H OCH_{3}) Anal. Calced. for $\mathrm{C}_{24} \mathrm{H}_{15} \mathrm{BrClN}_{3} \mathrm{O}_{2}:(492.75) \mathrm{C}, 58.50$; H,3.07; N, 8.53 Found: C,58.55; H,3.08; N, 8.55
(E)-2-(3-(3-Chlorophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)-3-(3,4-dimethoxy-phenyl)acrylonitrile (13f): Colour: Yellow, M.P.: 158-159, Yield: 80 \%, Recrystallizied from: benzene FT-IR (KBr, $\left.\mathrm{cm}^{-1}\right)$: $2210(\mathrm{C}=\mathrm{N}), 1687(\mathrm{C}=\mathrm{O})$. ${ }^{1} H$ NMR (300MHz,DMSO-d6,) 8.21 (s, 1H, $=\mathrm{CH}$), 7.83-7.11 $(\mathrm{m}, 11 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 3.88\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{OCH}_{3}\right)$. Anal. Calced. for $\mathrm{C}_{25} \mathrm{H}_{18} \mathrm{ClN}_{3} \mathrm{O}_{3}$: (443.88) C, 67.65; H,4.09; N, 9.47 Found: C,67.66; H,4.12; N, 9.45

(E)-2-Cyano-3-(3,4-dimethoxyphenyl)-N-(2-(5-thioxo-

 4,5- dihydro-1H-1, 2,4-triazol-3-yl) phenyl) acrylamide (14): A mixture of $6 \mathrm{~b}(0.01 \mathrm{~mol}, 3.34 \mathrm{~g})$ and thiosemicarbazide ($0.01 \mathrm{~mol}, 0.91 \mathrm{~g}$) was heated in neat at $160^{\circ} \mathrm{C}$ for 4 hrs . After cooling, the precipitate formed was collected by filtration and recrystallized from toluene to give 14. Colour: Yellow, M.P.: 258-259, Yield: 45%, FT-IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3270(\mathrm{NH}, \mathrm{OH}), 2199(\mathrm{C}=\mathrm{N}), 1682(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) 11.69(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 8.64-8.29(\mathrm{~m}, 5 \mathrm{H}, 4 \mathrm{Ar}-$ $\mathrm{H}+1 \mathrm{H},=\mathrm{CH}), 7.94(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.67(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.64-7.50$ $(\mathrm{m}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 3.98\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{OCH}_{3}\right)$. Anal. Calced. for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}_{3} \mathrm{~S}$: (407.45) C, 58.96; H,4.21; N, 17.19 Found: C,58.95; H,4.20; N, 17.183-(3,4-Dimethoxyphenyl)-10-oxo-2-phenyl-1-thioxo-2,10-dihydro-1H-pyrimido [6,1-b]quinazoline-4carbonitrile (15): A mixture of $6 \mathrm{~b}(0.01 \mathrm{~mol}, 3.34 \mathrm{~g})$ and phenyl thiourea ($0.01 \mathrm{~mol}, 0.152 \mathrm{~g}$) in pyridine $(50 \mathrm{~mL})$ was refluxed for 4 hrs . After cooling, the reaction mixture was poured onto ice cold HCl , the solid formed was collected, dried and recrystallized from toluene to give 15. Colour: Brown, M.P.: 230-231, Yield: 40 \%,FT-IR (KBr, cm^{-1}): 2203 $(\mathrm{C}=\mathrm{N}), 1682(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) 8.85-8.31(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}-$ $\mathrm{H}), 7.80-7.56\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.21-6.97(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 3.98(\mathrm{~s}$, $\left.6 \mathrm{H}, 2 \mathrm{OCH}_{3}\right)$. Anal. Calced. for $\mathrm{C}_{26} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}:(466.51) \mathrm{C}$, 66.94; H,3.89; N, 12.01 Found: C,66.96; H,3.87; N, 12.01

REFERENCES

1. Pietrzak, A., A. M-Tloczek and E. B-Blaszczyk, 2009. Immun. Lett., 123(1): 46-51.
2. Olynych, T.J., D.L. Jakeman and J.S. Marchall, 2006. J. Aller. and Clin. Immun., 118(4): 837-843.
3. Schimizu, T. and Kanal, K.I. Yoshiyukyo, 2006. Kazuhito. J. Pharm. Pharmacol., 58(1): 91-94.
4. Charng, M.J. and C.H. Wu, 2006. Br, J. Pharmacol., 147(1): 117-24.
5. Platten, M., P.P. HO, S. Youssef, P. Fontoura, E.M. Hur, R. Gupta, L.Y. Lee, B.A. Kidd, W.H. Robinson, R.A. Sobel, M.L. Selley and L. Steinman, 2005. Science, 310(5749): 850-5.
6. Platten, M., P.P. Ho and L. Steinman, 2006. Drug Discovery Today: Therapeutic Strategies, 3(3): 401-408.
7. Yatsunami, J., Y. Fukuno, M. Nagata, N. Tsurta, S. Aoki, Tominaga, M. Kawashima and M.S. Taniguchi, 2000. Int. J. Encol., 17(6): 451-6.
8. Ogita, H., Y. Isobe, H. Takaku, R. Sekine, Y. Goto, S. Misawa and H. Hayashi, 2002. Bioorg. Med. Chem., 10: 3473-80.
9. Douglasjr, J.S., 2007. Am. J. Card., 100(5): 510-516.
10. Jahanyar, J., K.A. Youker, G.T. Amione, M.M. Koerner, B. Bruckner, G.P. Noon and M. Loebe, 2008. J. Heart and Lung Transplan., 27(7): 701-709.
11. Hiromu, H., K. Hiroshi, N. Yoshinori, K. Koji, M. Yukiniko, I. Akira, F. Mideki and S. Fumiyasu, 1997. PCT Int.
12. Eguchi, S., 2006. Top; Heterocycl. Chem., 6: 113-156.
13. Al-Obaid, A.M., S.G. Abdel-Hamide, H.A. El-Kashef, A.A. Abdel-Aziz, A.S. El-Azab, H.A. Al-Khamees and H.I. El-Subbagh, 2009. Eur. J. Med. Chem., (44): 2379-2391.
14. Hsieh, P., T. Hwang, C. Chung, F. Chang, T. Wang, and Y. Wu, 2005. Bioorg. and Med. Chem. Letters, 15: 2786-2789.
15. Shcherbakova, I., M.F. Balandrin, J. Fox, A. Ghatak, W.L. Heaton and R.L. Conklin, 2005. Bioorg. Med. Chem. Letters, 15: 1557-1560.
16. Panneerselvam, P., B. Rather, D. Reddy and N. Kumar, 2009. Eur. J. of Med. Chem., 44: 2328-2333.
17. El-Khamry, A.A., S.A. Shiba and A.A. Shalaby, A.A. Abdalaha, 2006. J. Heterocyclic Chem., 43: 1189-1193.
18. Madkour, H.M., S.A. Shiba, H.M. Sayed and A.A. Hamed, 2001. Sulfur Letters, 24: 151.
19. Shalaby, A.A., A.A. El-Khamry, S.A. Shiba and A.A. Abdalaha, 2000. Archiv. Der Pharamazie, 333: 355.
20. El-Ziaty, A.K. and S.A. Shiba, 2007. Synth. Commun, 37(22): 4043-4046.
21. Horner, L. and K. Kluppel, 1955. Amm. Chem., 591: 69.
22. Skehan, P., R. Stroreng et al., 1990. J. Natl Cancer Inst., 82: 1107-1112.
23. Hiromu, H., K. Hiroshi, N.K. Yoshinori, M. Koji, I. Akira, F. Mideki and S. Fumiyasu, 1997. PCT Int. Appl.
24. Jaafar, I., G. Francis, R. Danion-Bougot and D. Danion, 1994. Synthesis, (1): 56-60.
