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Abstract: A subset W of vertices of a graph G is called a resolving set for G if for every pair of distinct 
vertices u and v of G, there exists a vertex w∈W such that the distance between u and w is different from the 
distance between v and w. A resolving set containing a minimum number of vertices is called a metric basis 
for G and the number of vertices in a metric basis is called the metric dimension of G, denoted by β(G). A 
subset S of vertices of a graph G is called a determining set if whenever two automorphisms agree on the
elements of S, they agree on all of G. The minimum cardinality of a determining set of G is called the 
determining number of G, denoted by Det(G). In this paper, we find the metric dimension of Cayley graphs, 
Cay(Zn: S) for all n≥7 and S = {±1,±3}. Also we show that, for all prime numbers n = 2p+1 with p prime and 
any subset S of nZ \{0}  with S = -S, S ≠ φ  and nS Z \{0}≠ , nDet(Cay(Z : S ) ) = 2.
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INTRODUCTION

Let G be a connected graph. The distance between two vertices u and v of G is the length of a shortest path 
between them, denoted by d(u,v). For a vertex v in a graph G, the eccentricity of v, denoted by e(v), is the distance 
between v and a vertex farthest from v in G. For an ordered set 1 2 kW = { w , w ,...,w } of vertices and a vertex v in G, the 
code of v with respect to W is the ordered k-tuple W 1 2 kc (v)=(d(v,w ),d(v,w ),...,d(v,w )) . The set W is called a 
resolving set  [16, [25] for G if every two vertices of G have distinct codes with respect to W. A resolving set W of 
minimum cardinality is a metric basis  [6] and |W| is the metric dimension of G, denoted by β(G) [16]. For a set 
W V(G)⊆  of a graph G to be resolving, we need only to check that W Wc (u) c (v)≠  for distinct vertices

u,v V(G) W∈ − , because wi is the only vertex of W for which the ith coordinate of its code with respect to W is 0. 
Resolving sets were firstly defined by Slater [25], in 1975. Independently, Harary and Melter studied resolving 

sets in 1976 and used the term metric dimension [16], the terminology which we have adopted. Slater used the term 
locating set for resolving set and location number for metric dimension and initiated the study of this invariant by its 
application to the placement of minimum number of Sonar/Loran detecting devices in a network so that the position o f
every vertex in the network can be uniquely described in terms of its distances to the devices in the set. Khuller et al.
[19] studied robot navigation in a graph-structured framework, relating this to the notion of metric dimension of a 
graph and gave a construction which shows that the metric dimension of a graph is NP-hard. It is assumed that a robot 
navigating a graph can sense its distance to each of the landmarks (represented by nodes in a graph) and hence 
uniquely determine its location in the graph. These concepts have also been investigated by Johnson [13] of the 
Pharmaceutical Company while attempting to develop a capability of large data sets of chemical graphs and he also 
noted that the problem of finding the metric dimension is NP-hard. Resolving sets have been widely studied, arising in 
several areas including coin weighing problems [3], network discovery and verification [4], strategies for mastermind 
game [10], robot navigation [19] and connected joins in graphs [24]. Applications to chemistry are given in [7] and in 
pattern recognition and image processing are discussed in [21]. 
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(a)                                               (b)

Fig. 1: (a) Cay(Z10: S) with S = {±1}, (b) Cay(Z10: S) with S = {±1,±3}

The concept of metric dimension helps in studying another notion which can be used to identify the 
automorphism group of a graph, called the determining number of a graph. A set of vertices S V(G)⊆  is called a 
determining set if whenever g,h Aut(G)∈  and g(v) = h(v) for all v∈S, then g = h. That is, the image of S under an 
arbitrary automorphism determines the automorphism completely. The determining number is the smallest size of a 
determining set and is denoted by Det (G). This notion was introduced by Boutin in [5]. Independently, Erwin and 
Harary studied this notion and used the terms fixing set and fixing number, denoted by fix (G) [11]. Every graph has a 
determining set, since any set containing all but one vertex is determining. There are graphs, e.g., Kn and K1,n, for 
which such a determining set is minimal [11]. Boutin also proved that, nDet(P ) = 1 ; n 2,≥ nDet(C ) = 2;n 3,≥

Det(P(5,2))=3 [11]. A basis for a vector space is an analogue of a determining set. Thus, in a vector space the 
determining number is just the dimension. An early form of a determining set is the concept of a base for a group 
action. The determining number can be obtained by using its connection with the metric dimension, because the two 
parameters are intrinsically related. The metric dimension of a graph provides an upper bound for its determining 
number. [13] For every connected graph G, Det(G) (G)≤ β . Let H be a finite group and let S⊆H. The corresponding 
Cayley (di)graph Cay(H,S) has vertex set H and two vertices g,h∈H are joined by an (arc)edge from g to h if and only 
if there exists s∈S such that g = sh. A special family of Cayley (di)graphs (also referred to as circulant graphs) with 
vertex set 

n i nV(Cay(Z :S))={v : i Z }∈

and edge set 
n i ((i s )modn)E(Cay(Z :S) )={vv : 0 i n 1,s S}+ ≤ ≤ − ∈

where n
S {1,2,.. . , }

2
⊆   . If S has the property that S = -S, then Cay(Zn: S) are undirected graphs, otherwise they are 

directed. Figgure 1 shows undirected Cayley graphs Cay(Z10: S) for S = {±1} and S = {±1, ±3}. We refer to the cycle 
0 1 n 1 0v v v v−− − − −  in Cay(Zn: S) as the principal cycle. The complete and empty graphs are also Cayley graphs, 

with S = Zn and S = φ, respectively. 
The metric dimension of Cayley digraph of the dihedral group Dn of order 2n with a minimum set of generators is 

n [12]. Also it was shown that, for positive integers m and n, the metric dimension of Cayley digraph for the group 
Zn⊕Zm with generating set {(1,0),(1,0)} is min (m,n) [12]. 

In this paper, we consider the Cayley graphs Cay(Zn: S). In section 2, for S = {±1,±3}, we show that 
n(Cay(Z : S ) ) = 3β  when n ≡ 1 (mod 6), n(Cay(Z : S ) ) = 4β  when n ≡ 0,3,4,5 (mod 6) and n4 (Cay(Z :S)) 6≤ β ≤  when n ≡

2 (mod 6). In section 3, we will find the determining number of Cay(Zn: S), where nS Z⊆  has S = -S, S ≠ φ  and 

*
nS Z≠   and when n, n 1

2
−  both are prime. 

METRIC DIMENSION OF CAYLEY GRAPHS

Let n n 1G = ( G ) ≥  be a family of connected graphs Gn of order φ(n) for which n (n)=lim →∞φ ∞ . If there exists a 

constant M>0 such that n(G ) Mβ ≤  for every n≥1, then we shall say that G has bounded metric dimension, otherwise 
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G has  unbounded  metric  dimension.  If  all  graphs  in  G have the same metric dimension (which does not depend 
upon n), then G is called a family of graphs with constant metric dimension [18]. Paths Pn and cycles Cn(n≥3) are 
families of graphs with constant metric dimension [19]. Also antiprism An and generalized Petersen graphs P(n,2) and 
P(n,3) are families of graphs with constant metric dimension [17, 18]. In [18], Javaid et al. considered a family of 
Cayley graphs Cay(Zn: S) with S = {±1,±2} (also referred to as  a 4-regular family of Harary graphs H4,n) and proved 
that this is a family of graphs with constant metric dimension and asked for the characterization of more families of 
graphs with constant metric dimension. In [23], Salman et al. considered a family of Cayley graphs Cay(Zn: S) with 

n
S={1, , n 1}

2
−  and proved that it is a family of graphs with constant metric dimension. In this paper, we consider a 

family of Cayley graphs, Cay(Zn: S) with S = {±1,±3} and show that this is a family of graphs with constant metric 
dimension by proving Theorem 2. We give exact value for the metric dimension of Cay(Zn: {±1, ±3} when n≡0,1,3,4,5
(mod 6) and give upper bound when n≡2(mod 6). In what follows, the indices on vertices are taken modulo n. 

Lemma 2.1: For all n≥7 and n ≡ 1 (mod 6), β(Cay(Zn: S)) = 3

Proof: Let n = 6k+1 and k( 1) Z+≥ ∈ . First, we show that β(Cay(Zn: S))≤3. For the chosen index i; 0≤i≤n-1, we will 
show that W = i i 2 i 3k{ v , v , v }+ +  is a resolving set for Cay(Zn: S). The codes of the vertices of V(Cay(Zn: S))\W are:
For 1≤j≤3k,

W i j

(j,j ,3k j) j 0(mod3)
1

c (v ) = (j 2 , j 2,3k j 4) j 1(mod 3)
3

(j 4 , j 2,3k j 2) j 2(mod3)
+

− ≡
 + + − + ≡
 + − − + ≡

W i 3k 1c (v )+ +  = (k,k 1,1)+ , W i 3k 2c (v )+ +  = (k 1,k,2)+  and for 0≤j≤3k-3,

W n i j 1

(j 3 , j 3,3k j) j 0(mod3)
1

c (v ) = (j 5 , j 5,3k j 4) j 1(mod3)
3

(j 1 , j 7,3k j 2) j 2(mod3)
+ − −

+ + − ≡
 + + − + ≡
 + + − + ≡

One can see that all the vertices in V(Cay(Zn: S))\W have distinct codes with respect to W which shows that W is 
a resolving set for Cay(Zn: S). Hence, β(Cay(Zn: S))≤3.

Now for the lower bound, assume that the metric dimension is two and i i jW = { v , v },+  for fixed i; 0≤i≤n-1, forms 

a metric basis for V(Cay(Zn: S)). Then, for j = 1, W i 3 W i n 3c (v ) = c (v )+ + −  and for 2≤j≤n-1,

W i n 3 W i n 1

W i 1 W i 3

W i 1 W i n 1

c (v ) = c (v ) j 0(mod3)
c (v ) = c (v ) j 1(mod3)
c (v ) = c (v ) j 2(mod 3)

+ − + −

+ +

+ + −

≡
 ≡
 ≡

a contradiction since at least two vertices in Cay(Zn: S) have the same codes with respect to W. Thus, β(Cay(Zn: S))≤3.
Now  we  define  a  gap  between  two  vertices  of  a  graph  which  will  be  useful  in  the  next  lemmas.  Let  S 

be  a  set  of  two  or  more  vertices  of  the  principal  cycle,  let  v i  and  v j  be  two  distinct  vertices  of  S,  let P and 
P′ denote the two distinct vi-vj paths determined by the principal cycle. If either P or P′, say P, contains only two 
vertices of S (namely; v i and vj), then we refer to vi and vj as neighboring vertices of S and a set of vertices of P-{vi, vj}
is  called  the gap  of  S  (determined  by  v i  and  v j) and is denoted by γ. The number of vertices in a gap determined 
by  v i  and  vj  is  called  the  order  of  a  gap, denoted by |γ|. Consequently, if |S| = r, then S has r gaps, some of which 
may be empty. 

Lemma 2.2: For each even n≥10, when n ≡ 4 (mod 6), β(Cay(Zn: S)) = 4. 
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Proof:  For the chosen index i such that 0≤i≤n-1, we will show that W = i i 2 i 4 i 6{ v , v , v , v }+ + +  is a resolving set for 

Cay(Zn: S). Let n = 6k+4 and k( 1) Z+≥ ∈ , then the codes of the vertices of V(Cay(Zn: S))\W are:

W i 1c (v )=(1,1,1,3)+ , W i 3c (v )=(1,1,1,1)+  and for 5≤j≤3k+3,

W i j

( j , j , j , j 6) j 0(mod3)
1

c (v ) = (j 2 , j 2 , j 4 , j 4) j 1(mod3)
3

(j 4 , j 2 , j 2 , j 2) j 2(mod3)
+

− ≡
 + + − − ≡
 + − − − ≡

For 0≤j≤3k-1,

W n i j 1

(j 3 , j 3 , j 9 , j 3l 9) j 0(mod3)
1

c (v ) = (j 5 , j 5 , j 5 , j 3l 11) j 1(mod3)
3

(j 1 , j 7 , j 3l 7 , j 3l 7) j 2(mod3)
+ − −

+ + + − + ≡
 + + + − + ≡
 + + − + − + ≡

where
l = 0 f o r 0 j 3k 4≤ ≤ − and l = 2 f o r 3 k 3 j 3k 1− ≤ ≤ −

One can see that all the vertices of Cay(Zn: S) have distinct codes with respect to W which shows that W is a 
resolving set for Cay(Zn: S). Hence, β(Cay(Zn: S))≤4.

Now for the lower bound, we contrarily suppose that the metric dimension is two and i i jW = { v , v },+  for fixed i; 

0≤i≤n-1, forms a metric basis for Cay(Zn: S). Then, for j = 1, W i 3 W i n 3c (v ) = c (v )+ + −  and for 2≤j≤n-1,

W i n 3 W i n 1

W i 1 W i 3

W i 1 W i n 1

c (v ) = c (v ) j 0(mod3)
c (v ) = c (v ) j 1(mod3)
c (v ) = c (v ) j 2(mod 3)

+ − + −

+ +

+ + −

≡
 ≡
 ≡


a contradiction, since at least two vertices in Cay(Zn: S) have the same codes with respect to W. Thus, β(Cay(Zn: S))≠2.
Now, assume that the metric dimension of Cay(Zn: S) is three and a resolving set W of three vertices forms a metric 
basis for Cay(Zn: S). For each fixed i; 0≤i≤n-1, we have the following two claims:

Claim 1: No adjacent vertices are in W.

(1) Suppose that W consists of three consecutive adjacent vertices i i 1 i 2v , v , v+ + , then W i 3 W i n 1c (v ) = c (v )=(1,2,1),+ + −

a contradiction.
(2) Suppose that W consists of two adjacent vertices then
(i) If i i 1 i jW = { v , v , v }+ +  then, we have

when j ≡ 0 (mod 3) then W i n 3 W i n 1c (v ) = c (v )+ − + −  for 3≤j≤n-4; when j ≡ 1 (mod 3) then W i 2 W i n 2c (v ) = c (v )+ + −  for j = 
n-1 and 4 j 3k 1≤ ≤ + , W i 3 W i n 1c (v ) = c (v )+ + −  for 3k 4 j n 3+ ≤ ≤ − , when j ≡ 2 (mod 3) then W i 3 W i n 1c (v ) = c (v )+ + −  for 
2≤j≤3k+2 and W i n 3 W i n 1c (v ) = c (v )+ − + −  for 3k 5 j n 2+ ≤ ≤ − , a contradiction.

(ii) If i i 3 i jW = { v , v ,v }+ +  then we have 

W i n 3 W i n 1

W i 1 W i n 1

c (v ) = c (v ) j 0(mod3)
c (v ) = c (v ) j 2(mod 3)

+ − + −

+ + −

≡
 ≡



and W i 1 W i n 3c (v ) = c (v )+ + −  for j  =  n-1. When j ≡ 1 (mod 3) then W i n 3 W i n 1c (v ) = c (v )+ − + −  for 1≤j≤3k-2 and 

W i n 4 W i n 2c (v ) = c (v )+ − + −  for 3k+1≤j≤n-3, a contradiction.
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(iii) If i i 1 i jW = { v , v ,v }− +  then we have W i 2 W i n 2c (v ) = c (v )+ + −  for j  = 1, W i 1 W i 3c (v ) = c (v )+ +  for j = 2 and when j ≡ 0 

(mod 3) then W i 1 W i n 3c (v ) = c (v )+ + −  for 3≤j≤3k and W i 3k W i 3k 4c (v ) = c (v )+ + +  for 3k+3≤j≤n-4 and

W i 1 W i 3

W i 2 W i 4

c (v ) = c (v ) j 1(mod3)
c (v ) = c (v ) j 2(mod3)

+ +

+ +

≡
 ≡



a contradiction.
(iv) If i i 3 i jW = { v , v ,v }− +  then we have W i 2 W i 4c (v ) = c (v )+ +  for j = 1 and when j ≡ 0 (mod 3) then

W i 3k 4 W i 3k 6c (v ) = c (v )+ + + +  for 3≤j≤3k+3 and W i 1 W i 3c (v ) = c (v )+ +  for 3k+6≤j≤n-1 and 

W i 1 W i 3

W i 1 W i n 1

c (v ) = c (v ) j 1(mod3)
c (v ) = c (v ) j 2(mod3)

+ +

+ + −

≡
 ≡



a contradiction.

Claim 2: No non-adjacent vertices are in W.
Suppose that W consists of three non-adjacent vertices. Since |W| = 3 and W consists of three vertices of the 

principal cycle of Cay(Zn: S), there are three gaps of W with no empty gap. We call a gap between first and second 
vertex of W, γ1; a gap between second and third vertex of W, γ2 and a gap between third and first vertex of W, γ3. We 
have the following two cases:

Case 1: First two gaps of W are of the same order.
Suppose that 1 2= = jγ γ  then, by Claim 1, 1≤j≤3k-1. Let i i j 1 i 2(j 1)W = { v , v ,v }+ + + + . Then we note that 

W i j 1 W i j 3

W i 1 W i 3

W i n 3 W i n 1

c (v ) = c (v ) j 0(mod3)

c (v ) = c (v ) j 1(mod3)
c (v ) = c (v ) j 2(mod 3)

+ − + +

+ +

+ − + −

≡


≡


≡


a contradiction. The case when all the three gaps are of the same order does not exist, since |W| = 3 and n-3 is not 
divisible by 3.

Case 2: First two gaps of W are of different order.
Suppose that 1 2= l , = mγ γ  and l m≠ .
(i) When l ≡ 1 (mod 3), we have W i 1 W i 3c (v ) = c (v )+ + , or W i 3 W i n 1c (v ) = c (v )+ + −  or W i n 1 W i 1c (v ) = c (v )+ − +  for m ≡ 0 

(mod 3). Also 

W i l W i l 2

W i 1 W i n 1

c (v ) = c (v ) for m 1(mod3)
c (v ) = c (v ) for m 2(mod3)

+ + +

+ + −

≡
 ≡



a contradiction.
(ii) When l ≡ 2 (mod 3) and 1≤j≤n-1, we have

W i l 2 W i l 4

W i j 1 W i j 1

W i n 3 W i n 1

c (v ) = c (v ) for m 0(mod3)
c (v ) = c (v ) for m 1(mod3)

c (v ) = c (v ) for m 2(mod3)

+ + + +

+ − + +

+ − + −

≡
 ≡


≡


a contradiction.
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(iii) When l ≡ 0 (mod 3) we have, for m ≡ 0 (mod 3), W i l 2 W i l 4c (v ) = c (v )+ + + + , where 3≤l≤3k-3 and 3≤m≤n-7,

W i 1 W i n 3c (v ) = c (v )+ + − , where l = 3k and m = 3k, W i l W i l 2c (v ) = c (v )+ + − , where 3k≤l≤n-7 and 3≤m≤3k-3.
For m ≡ 1 (mod 3),

W i l 2 W i l 4c (v ) = c (v )+ + + + , where 3≤l≤3k-3 and 1≤m≤3k+1,

W i l W i l 4c (v ) = c (v )+ + + , where l = 3k and 1≤m≤3k-2,

W i l W i l 2c (v ) = c (v )+ + + , where 3k+3≤l≤n-7 and 1≤m≤3k-5.

For m ≡ 2 (mod 3), W i 1 W i 3c (v ) = c (v )+ + , a contradiction, since at least two vertices in Cay(Zn: S) have the same 
codes with respect to W. Hence we have β(Cay(Zn: S))≥4.

Lemma 2.3: For all n≥8,

n4 (Cay(Z :S)) 6whenn 2(mod6)≤ β ≤ ≡ and n(Cay(Z :S) )=4whenn 5(mod6)β ≡

Proof: First we prove an upper bound for the metric dimension of Cay(Zn: S). We have the following two cases:

Case 1: When n≡2(mod 6), i.e., n = 6k+2 and k( 1) Z+≥ ∈ .
For all n≥8 and for the chosen index i; 0≤i≤n-1, we will show that W= i i 1 i 2 i 3 i 4 i 5{ v , v , v ,v , v ,v }+ + + + +  is a resolving 

set for Cay(Zn: S). Codes of the vertices of Cay(Zn: S) are:
For 4≤j≤3k+3

W i j

( j , j 3l 3 , j , j 3 , j , j 3) j 0(mod3)
1

c (v ) = (j 2 , j 1 , j 2 , j 1 , j 4 , j 1) j 1(mod3)
3

(j 3l 4 , j 1 , j 2 , j 1 , j 2 , j 5) j 2(mod3)
+

− + − − ≡
 + − + − − − ≡
 − + + − + − − ≡

where
l = 0 f o r 4 j 3k 1≤ ≤ +  and l = 2 f o r j = 3 k 2,3k 3+ +

For 0≤j≤3k-3,

W n i j 1

(j 3, j 6, j 3, j 6, j 3l 9, j 6) j 0(mod 3)
(j 5, j 2, j 5, j 8 , j 5, j 8) j 1(mod3)1c (v ) =
(j 1, j 4, j 7, j 4, j 7, j 3l 10) j 2(mod3)3+ − −

+ + + + − + + ≡
 + + + + + + ≡
 + + + + + − + ≡


where
l = 0 f o r 0 j 3k 5≤ ≤ −  and l = 2 f o r j = 3 k 4,3k 3− −

One can see that all the vertices of V(Cay(Zn: S))\W have distinct codes with respect to W which implies that W is 
a resolving set for Cay(Zn: S). Hence, β(Cay(Zn: S))≤6

Case 2: When n≡ 5(mod 6), i.e., n = 6k+5 and k Z+∈ .
For all n≥11 and for the chosen index i; 0≤i≤n-1, we will show that W= i i 2 i 4 i 6{ v ,v , v , v }+ + +  is a resolving set for 

Cay(Zn: S). Codes of the vertices of V(Cay(Zn: S))\W are: W i 1c (v )=(1,1,1,3)+ , W i 3c (v )=(1,1,1,1)+  and for 5≤j≤3k+5

W i j

( j , j , j , j 6) j 0(mod3)
1

c (v ) = (j 3l 2 , j 3l 2 , j 4 , j 4) j 1(mod3)
3

(j 3l 4 , j 2 , j 2 , j 2) j 2(mod3)
+

− ≡
 − + − + − − ≡
 − + − − − ≡

where l = 0 f o r 5 j 3k 1≤ ≤ +
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l = 1 f o r 3 k 2 j 3k 4+ ≤ ≤ + and l = 3 f o r j = 3 k 5+

For 0≤j≤3k-2

W n i j 1

(j 3 , j 3 , j 3l 9 , j 3l 9) j 0(mod3)
1

c (v ) = (j 5 , j 5 , j 5 , j 3l 11) j 1(mod3)
3

(j 1 , j 7 , j 7 , j 7) j 2(mod3)
+ − −

+ + − + − + ≡
 + + + − + ≡
 + + + + ≡

where l = 0 f o r 0 j 3k 6≤ ≤ −

l = 1 f o r 3 k 5 j 3k 3− ≤ ≤ − and l = 3 f o r j = 3 k 2−

One can see that all the vertices of V(Cay(Zn: S))\W have distinct codes with respect to W. Therefore W is a 
resolving set for Cay(Zn: S). Hence, β(Cay(Zn: S))≤ 4. 

Now for the lower bound, first note that β(Cay(Zn: S))≠2 since at least two vertices in Cay(Zn: S) have the same 
codes with respect to W as shown below: For each fixed i; 0 ≤i≤n-1, if i i jW = { v , v }+  forms a metric basis for Cay(Zn: S) 

then, for 1≤j≤n-2,

W i 1 W i n 1

W i n 3 W i n 1

W i 1 W i 3

c (v ) = c (v ) j 0(mod3)
c (v ) = c (v ) j 1(mod3)
c (v ) = c (v ) j 2(mod 3)

+ + −

+ − + −

+ +

≡
 ≡
 ≡

and W i 2 W i n 2c (v ) = c (v )+ + − , for j = n-1, a contradiction. Now, we assume that the metric dimension of Cay(Zn: S) is 
three and a resolving set W of three vertices forms a metric basis for Cay(Zn: S). For each fixed i; 0 ≤i≤n-1, we have the 
following two claims:

Claim 1: No adjacent vertices are in W.
(1) Suppose that W consists of three consecutive adjacent vertices i i 1 i 2v , v , v+ + , then W i 3 W i n 1c (v ) = c (v )=(1,2,1),+ + −

a contradiction.

(2) Suppose that W consists of two adjacent vertices then

(i) If i i 1 i jW = { v , v , v }+ +  then, for 1≤j≤n-2,

W i n 3 W i n 1

W i 3 W i n 1

c (v ) = c (v ) j 0,1(mod3)
c (v ) = c (v ) j 2(mod3)

+ − + −

+ + −

≡
 ≡

and W i 2 W i n 2c (v ) = c (v )+ + − , for j = n-1, a contradiction.

(ii) If i i 3 i jW = { v , v ,v }+ +  then, for 1≤j≤n-2,

W i n 3 W i n 1

W i 1 W i n 1

c (v ) = c (v ) j 0,1(mod3)
c (v ) = c (v ) j 2(mod3)

+ − + −

+ + −

≡
 ≡

and W i 1 W i n 3c (v ) = c (v )+ + − , for j = n-1, a contradiction.

(iii) If i i 1 i jW = { v , v ,v }− +  then, for j = 1, W i 2 W i n 2c (v ) = c (v )+ + −  and for 2≤j≤n-1,

W i 1 W i n 3

W i 1 W i 3

c (v ) = c (v ) j 0(mod3)
c (v ) = c (v ) j 1,2(mod 3)

+ + −

+ +

≡
 ≡

a contradiction.
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(iv) If i i 3 i jW = { v , v ,v }− +  then, for j = 1, W i 2 W i 4c (v ) = c (v )+ +  and for 2≤j≤n-1,

W i 1 W i n 1

W i 1 W i 3

c (v ) = c (v ) j 0(mod3)
c (v ) = c (v ) j 1,2(mod3)

+ + −

+ +

≡
 ≡

a contradiction.

Claim 2: No non-adjacent vertices are in W.
Suppose that W consists of three non-adjacent vertices, so there are three gaps with no empty gap. We have the 

following two cases:

Case 1: First two gaps of W are of same order.
Suppose that 1 2= = jγ γ  then, by Claim 1, 1≤j≤3k-1. Let i i j 1 i 2(j 1)W = { v , v ,v }+ + + +  then we note that, 

W i 1 W i 3

W i 1 W i n 1

c (v ) = c (v ) j 0,1(mod 3)
c (v ) = c (v ) j 2(mod3)

+ +

+ + −

≡
 ≡

a contradiction. The case when all the three gaps are of the same order does not exist here, since |W| = 3 and n-3 is not 
divisible by 3 when n ≡ 2,5 (mod 6).

Case 2: First two gaps of W are of different order.
Suppose that 1 2= l , = mγ γ  and l m≠ , then
(i) When l ≡ 0 (mod 3), we have 

W i l 2 W i l 4

W i 1 W i 3

c (v ) = c (v ) m 0,1(mod3)
c (v ) = c (v ) m 2(mod 3)

+ + + +

+ +

≡
 ≡

a contradiction.
(ii) When l ≡ 1 (mod 3), we have

W i l W i l 2

W i 1 W i n 1

c (v ) = c (v ) m 1(mod 3)
c (v ) = c (v ) m 0,2(mod3)

+ + +

+ + −

≡
 ≡

a contradiction.
(iii) When l ≡ 1 (mod 3) and 0≤j≤n-1, we have

W i l 2 W i l 4

W i j 1 W i j 1

W i n 3 W i n 1

c (v ) = c (v ) m 0(mod3)
c (v ) = c (v ) m 1(mod3)

c (v ) = c (v ) m 2(mod 3)

+ + + +

+ − + +

+ − + −

≡
 ≡


≡


a contradiction. Since at least two vertices in Cay(Zn: S) have the same codes with respect to W, so we have β(Cay(Zn:
S))≥4. Thus, we conclude that, 4≤β(Cay(Zn: S))≥6 when n ≡ 2 (mod 6) and β(Cay(Zn: S))=4 when n ≡ 5 (mod 6).

Lemma 2.4: For all n≥6 and n ≡ 0,3 (mod 6), β(Cay(Zn: S))=4.

Proof: First we prove an upper bound for the metric dimension of Cay(Zn: S). We have the following two cases:

Case 1: When n≡ 0(mod 6), i.e., n = 6k and k Z+∈ .
For n≥6 and for the chosen index i; 0≤i≤n-1, we will show that W = i i 1 i 2 i 3{ v , v , v , v }+ + +  is a resolving set for 

Cay(Zn: S). The codes of the vertices of V(Cay(Zn: S))\W are:
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For 4≤j≤3k+1

W i j

( j , j 3 , j , j 3) j 0(mod3)
1

c (v ) = (j 2 , j 1 , j 2 , j 1) j 1(mod3)
3

( j 4 , j 1 , j 2 , j 1) j 2(mod3)
+

+ − ≡
 + − + − ≡
 + + − + ≡

For 0≤j≤3k-3

W n i j 1

(j 3 , j 6 , j 3 , j 6) j 0(mod3)
1

c (v ) = (j 5 , j 2 , j 5 , j 8) j 1(mod3)
3

(j 1 , j 4 , j 7 , j 4) j 2(mod3)
+ − −

+ + + + ≡
 + + + + ≡
 + + + + ≡

It is clear that all the vertices of V(Cay(Zn: S))\W have distinct codes with respect to W which shows that W is a 
resolving set for Cay(Zn: S). Hence β(Cay(Zn: S))≤4.

Case 2: When n ≡ 3(mod 6), i.e., n = 6 k 3+  and k Z+∈ .
For n≥9 and for the chosen index i; 0≤i≤n-1, we will show that W= i i 2 i 4 i 6{ v , v , v , v }+ + +  is a resolving set for 

Cay(Zn: S). The codes of the vertices of V(Cay(Zn : S))\W are: W i 1c (v )=(1,1,1,3)+ , W i 3c (v )=(1,1,1,1)+  and for 

5≤j≤3k+4

W i j

(j 3l , j , j , j 6) j 0(mod3)
1

c (v ) = (j 3l 2 , j 3l 2 , j 4 , j 4) j 1(mod3)
3

(j 3l 4 , j 2 , j 2 , j 2) j 2(mod3)
+

− − ≡
 − + − + − − ≡
 − + − − − ≡

where
l = 0 f o r 5 j 3k 1≤ ≤ +  and l=1for3k 2 j 3k 4+ ≤ ≤ +

For 0≤j≤3k-3

W n i j 1

(j 3 , j 3 , j 3l 9 , j 3l 9) j 0(mod3)
1

c (v ) = (j 5 , j 5 , j 5 , j 3l 11) j 1(mod3)
3

(j 1 , j 7 , j 7 , j 3l 7) j 2(mod3)
+ − −

+ + − + − + ≡
 + + + − + ≡
 + + + − + ≡

where
l = 0 f o r 0 j 3k 6≤ ≤ −  and l = 1 f o r 3 k 5 j 3k 3− ≤ ≤ −

One can see that all the vertices of V(Cay(Zn: S))\W have distinct codes with respect to W which shows that W is 
a resolving set for Cay(Zn: S). Hence, β(Cay(Zn: S))≤4.

Now for the lower bound, first note that β(Cay(Zn: S))≠4 since, for each fixed i; 0≤i≤n-1, if i i jW = { v , v }+  is a 

metric basis for Cay(Zn: S) then, for 1≤j≤n-1,

W i 1 W i n 1

W i n 3 W i n 1

W i 1 W i 3

c (v ) = c (v ) j 0(mod3)
c (v ) = c (v ) j 1(mod3)
c (v ) = c (v ) j 2(mod 3)

+ + −

+ − + −

+ +

≡
 ≡
 ≡

a contradiction, since at least two vertices in Cay(Zn: S) have the same codes with respect to W. Now, assume that the 
metric dimension of Cay(Zn: S) is three and a resolving set W of three vertices forms a metric basis for Cay(Zn: S). For 
each fixed i; 0≤i≤n-1, we have the following two claims:

Claim 1: No adjacent vertices are in W.

(1) Suppose that W consists of three consecutive adjacent vertices i i 1 i 2v , v , v+ + , then W i 3 W i n 1c (v ) = c (v )=(1,2,1),+ + −

a contradiction.
(2) Suppose that W consists of two adjacent vertices then, we have
(i) If i i 1 i jW = { v , v , v }+ +  then we have
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W i 3k 1 W i 3k 1

W i n 3 W i n 1

c (v ) = c (v ) j 0(mod3)
c (v ) = c (v ) j 1(mod3)

+ − + +

+ − + −

≡
 ≡

When j ≡ 2 (mod 3) then W i 3 W i n 1c (v ) = c (v )+ + −  for 2≤j≤3k-1, W i n 3 W i n 1c (v ) = c (v )+ − + −  for 3k 2 j n 4,+ ≤ ≤ −

W i 2 W i n 2c (v ) = c (v )+ + −  for j = n-1, a contradiction.
(ii) If i i 3 i jW = { v , v ,v }+ +  then we have W i 3k 1 W i 3k 1c (v ) = c (v )+ − + +  when j ≡ 0 (mod 3) and for k≥2,

W i n 3 W i n 1

W i 3k 2 W i 3k

c (v ) = c (v ) j 1(mod3)
c (v ) = c (v ) j 2(mod3)

+ − + −

+ − +

≡
 ≡

a contradiction.
(iii) If i i n 3 i jW = { v , v , v }+ − +  then we have

W i 3k 1 W i 3k 1

W i 1 W i 3

c (v ) = c (v ) j 0(mod 3)
c (v ) = c (v ) j 2(mod3) and k 2

+ − + +

+ +

≡
 ≡ ≥

When j ≡ 1 (mod 3) then W i 3 W i n 1c (v ) = c (v )+ + −  for j = 1, W i 1 W i 3c (v ) = c (v )+ +  for 4≤j≤3k+1, W i 1 W i n 1c (v ) = c (v )+ + −  for 
3k+4≤j≤n-2, a contradiction.
(iv) If i i n 1 i jW = { v , v ,v }+ − +  then we have

W i n 4 W i n 2

W i 1 W i 3

c (v ) = c (v ) j 0(mod3)
c (v ) = c (v ) j 2(mod3) and k 2

+ − + −

+ +

≡
 ≡ ≥

When j ≡ 1 (mod 3) then W i 3 W i n 3c (v ) = c (v )+ + −  for j = 1, W i 1 W i 3c (v ) = c (v )+ +  for 4≤j≤3k+1, W i 1 W i n 3c (v ) = c (v )+ + −

for 3k+4≤j≤n-2, a contradiction.

Claim 2: No non-adjacent vertices are in W.
Suppose that W consists of three non-adjacent vertices, so there are three gaps with no empty gap. We have the 

following two cases:

Case 1: First two gaps of W are of the same order.
Suppose that 1 2= = jγ γ  then, by Claim 1, 1≤j≤3k-1. Let i i j 1 i 2(j 1)W = { v , v ,v }+ + + +  then we note that 

W i j 1 W i j 3

W i j W i j 2

c (v ) = c (v ) j 0(mod3)

c (v ) = c (v ) j 1,2(mod3)
+ − + +

+ + +

≡
 ≡

The case when all the three gaps are of the same order occurs only for j = 2k-1 or j = 2k.

Case 2: First two gaps of W are of different order.
Suppose that 1 2= l , = mγ γ  and l m≠ .

(i) When l ≡ 0 (mod 3) and 3≤l≤n-6, then W i l 2 W i l 4c (v ) = c (v )+ + + +  for m ≡ 1 (mod 3) and 1≤m≤n-8,

W i n 4 W i n 6c (v ) = c (v )+ − + −  for m ≡ 2 (mod 3) and 2≤m≤n-7, where k≥2 and for m ≡ 0 (mod 3) and 3 l 3k≤ ≤ ,

W i 1 W i 3c (v ) = c (v )+ +  where 3≤m≤n-9 and for 3k 3 l n 6,+ ≤ ≤ − W i l 2 W i l 4c (v ) = c (v )+ + + + , where 3 m n 9 3k.≤ ≤ − −

(ii) When  l ≡  1   (mod  3)  and  1≤l≤n-8,  then  for  m ≡  1  (mod  3)  when 1 l 3k 2≤ ≤ − , W i l W i l 2c (v ) = c (v )+ + +

where 1 m 3k 2≤ ≤ −  and W i 1 W i n 1c (v ) = c (v )+ + −  where 3k 1 m n 5,+ ≤ ≤ −  and for 3k 1 l n 5,+ ≤ ≤ −

W i n 3 W i n 1c (v ) = c (v )+ − + −   where 1 m 3k 2.≤ ≤ −   Now  for  m ≡  2  (mod  3)  and 1 l n 8≤ ≤ − , W i 1 W i 3c (v ) = c (v )+ +
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where 2 m n 7,≤ ≤ −  and for m ≡ 0 (mod 3) when 1 l 3k 2≤ ≤ − , W i 1 W i n 1c (v ) = c (v )+ + −  where 3 m n 6≤ ≤ −  and 
when 3k 1 l n 8,+ ≤ ≤ − W i 1 W i 3c (v ) = c (v )+ +  where 3 m 3k 6.≤ ≤ −

(iii) When l ≡ 2 (mod 3) and 0≤l≤n-7, then for m ≡ 1 (mod 3) when 2≤l≤3k-4, W i l 2 W i l 4c (v ) = c (v )+ + + +  where 0≤m≤n-8
and when 3k 1 l n 7− ≤ ≤ − , W i l W i l 2c (v ) = c (v )+ + +  where 1 m 3k 5.≤ ≤ −  Now for m ≡ 2 (mod 3) and 2≤l≤n-7,

W i 2 W i 4c (v ) = c (v )+ +  where 2 m n 7.≤ ≤ −  Also for m ≡ 0 (mod 3) when 2≤l≤3k-4, W i l 2 W i l 4c (v ) = c (v )+ + + +  where 
3 m 3k≤ ≤  and when 2 l 3k 4,≤ ≤ − W i 1 W i n 1c (v ) = c (v )+ + −  where 3k 3 m 3k 6+ ≤ ≤ +  and when 3k 1 l n 7,− ≤ ≤ −

W i 1 W i n 1c (v ) = c (v )+ + −  where 3 m 3k,≤ ≤  a contradiction, since at least two vertices in Cay(Zn: S) have the same 

codes with respect to W. Hence we have β(Cay(Zn: S))≥4, for n ≡ 0,3 (mod 6). Finally, we conclude, β(Cay(Zn:
S))=4 when n ≡ 0,3 (mod 6).

Hence, by Lemmas 2.1 -- 2.4, we have the following main result: 

n

3 ; n 1(mod3)
(Cay(Z :S))= 4 ; n 0,3,4,5(mod3)

≡
β ≡



and
n4 (Cay(Z :S)) 6 for n 2(mod3)≤ β ≤ ≡

DETERMINING NUMBER OF Cay(Zn: S)

In this section, we will find the determining number of Cay(Zn: S), where nS Z \{0}⊆  has the property that S = -S,

S ≠ φ  and *
n nS Z ( = Z \{0})≠   and when n, n 1

2
−  both are prime. We use an approach called the symmetry breaking, 

which was formalized by Albertson and Collins [1] and independently by Harary [14, 15], in which a subset of the 
vertex set is determined(fixed) in such a way that the automorphism group of the graph is destroyed. Symmetry 
breaking has been applied to the problem of programming a robot to manipulate objects [20]. In [5], Boutin raised the 
following question:

Question: [5] Can the difference between the metric dimension and the determining number of a graph of order n be 
arbitrarily large?

This question turns out to be interesting since an automorphism preserves distances and resolving sets are also 
determining sets [5, 11]. It arises first as an open problem in [5] and its answer has led to a number of results on the 
determining number of some families of graphs in which the metric dimension is known. In 1973, Alspach [22] proved 
the following result on automorphism group of Cayley graphs Cay(Zn: S) on prime number of vertices. 

Theorem 3.1: [22] Let p be prime. If S = φ  or *
pS = Z , then the automorphism group of Cayley graph Cay(Zp: S) is 

given by, p pAut(Cay(Z :S) )=S ; otherwise, 

p a,b pAut(Cay(Z :S))={T ; a E(S),b Z }∈ ∈

where
a,b i ai bT ( v ) = v +

and E(S) is the largest even order subgroup of *
pZ  such that S is a union of cosets of E(S). The following result gives 

the determining number of Cay(Zn: S).

Theorem 3.2: For all prime numbers n = 2p+1 with p is prime, let Cay(Zn: S) be a Cayley graph, where nS Z \{0}⊆

has S = -S, S ≠ φ  and *
nS Z≠ , then nDet(Cay(Z : S ) ) = 2.
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Proof: First, we will find the automorphism group of Cay(Zn: S). Since S ≠ Φ  and *
nS Z≠ , we note that E(S) = {1,-1}

is the largest even order subgroup of *
nZ  such that S is the union of cosets of E(S) = {1,-1}. Hence, by Theorem 3, we 

have

n a,b nAut(Cay(Z :S)={T ; a {1, 1},b Z }∈ − ∈

where
a,b i ai bT ( v ) = v +

Since |E(S)| = 2 and |Zn| = n, so n|Aut(Cay(Z :S)|=2n . Now, we will show that all these automorphisms become 
trivial by determining(fixing) only two vertices in Cay(Zn: S). Let vi be any arbitrary vertex of Cay(Zn: S) such that 

i a,b i ai bv = T (v ) = v +

Then b = 0 when a = 1 and b = 2i when a = -1.
In the first case, for all 0≤j≤n-1, we have 

a,b j jT ( v ) = v

In the second case, for all 0≤j≤n-1, we have 

j

a,b j 2i j

v if j = i

T ( v ) = v otherwise−







One can see that 2n-1 automorphisms become trivial in the first case and the remaining non-trivial automorphism 
of Cay(Zn: S) we have in the second case, which maps each v j to v2i-j for i+1≤j≤i+n-1. This non-trivial automorphism 
become trivial by determining(fixing) the vertex vi+1 of Cay(Zn: S). Thus the automorphism group of Cay(Zn: S) is 
destroyed by determining(fixing) the subset i i 1{ v ,v }+  of vertices of Cay(Zn: S). Hence, Det (Cay(Zn: S)) = 2. 

CONCLUDING REMARKS

The aim of this work is to find the difference between metric dimension and determining number. We notice that 
for the graphs in Cay(Zn; {±1,±3}) with prime order n = 2p+1 where p is a prime, the difference between metric 
dimension and determining number is either 1 or 2.

Question: Does there exist a regular graph G such that β(G) is not bounded?

Conjecture: For all regular families of graphs with finite eccentricities, the metric dimension is independent of the 
choice of graph in the family. 
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