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Abstract: In  this  paper, a numerical method to solve nonlinear Fredholm integral equations of second 
kind is proposed and some numerical notes about this method are addressed. The method utilizes 
Chebyshev wavelets constructed on the unit interval as a basis in the Galerkin method. This approach 
reduces  this  type  of  integral  equation  to  solve  a  nonlinear  system  of  algebraic equation. The method 
is  also  used  to  solve  Fredholm  integro-differential  equation  of  second  kind. Several numerical 
examples  are  presented  to  compare  accuracy  of  Chebyshev wavelet Galerkin method with methods 
using polynomial Chebyshev basis.
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INTRODUCTION

Integral equations have significant applications in 
various fields of science and engineering [1-5]. These
equations also occur as reformulations of other
mathematical problems such as partial differential
equations and ordinary differential equations. A large 
class of integral equations is nonlinear Fredholm
integral equation of second kind, namely 

1 m

0
u(s) K(s,t)[u(t)] dt f(s),  0 s 1, 0λ − λ = ≤ ≤ λ ≠∫ (1)

where ƒ and K are known functions, u is unknown 
function to be determined and m>1 is an integer.
Several methods have been proposed for numerical
solution of these types of integral equation. In [6], the 
Petrov-Galerkin method and the iterated Petrov-
Galerkin method have been applied to solve a class of 
nonlinear integral equations. Lardy [7] described a
variation of the Nystrom method for nonlinear integral 
equations of the second kind. In [8], a method for
numerical solution of nonlinear Fredholom integral
equations utilizing positive definite functions is
proposed by Alipanah and Dehghan. Authors of [9] 
introduced  a  numerical  method  for  solving nonlinear 

Fredholm integral equations of the second kind using 
Sinc-collocation method. 

A different problem take place when we have
derivative of unknown function u in the equation, like

1

0
u(s) q(s)u(s) K(s,t)[ u(t) u(t)]dt f(s),  0 s 1′ ′+ = α +β + ≤ ≤∫ (2)

where α and β are constant numbers, function q is 
known, with the initial condition u(0) = r. This is
Fredholm integro-differential equation.

Here, we would like to review some computational 
method for solving these equations. In [10], a
Chebyshev finite difference method has been proposed 
in order to solve linear and nonlinear second-order
Fredholm integro-differential equations. The variational
iteration method (VIM) is considered to solve integral 
and integro-differential equations in [11]. Golbabai and 
Seifollahi [12] have applied RBF networks for solving 
the linear integro-differential equations. In [13]
investigated the numerical solution of the nonlinear 
integro-differential equations based on the meshless 
method. In recent years, orthogonal functions receive a 
lot of attentions to solve these types of problems. The 
main   advantage  of  using  orthogonal  basis  is  that  it
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reduces the problem into solving a system of linear 
algebraic equations, by truncated approximation series

                   
N 1

N i i
i 0

y(t) y (t) c (t)
−

=

= φ∑ (3)

There are many different families of orthogonal 
functions which can be used. Orthogonal wavelet basis 
are one of them which are considerably useful to solve 
integral equations. 

An efficient algorithm based on Haar wavelet -as
simplest wavelet-approach for numerical solution of
integral equations is given in [14]. Other wavelet
families like CAS wavelet [15-17], Coifman wavelet 
[18],... are used to solve Fredholm integral or integro-
differential equation of the second kind, directly. But 
among them polynomial wavelets have useful
properties like high vanishing mo ments, easy structure 
and closed formula. These characteristics cause
utilizing polynomial wavelets to be very striking.
Polynomial Legendre wavelets are used in solving
many kinds of problems [19, 20]. Legendre wavelet is 
also used to solve integro-differential equation [21]. 
Legendre wavelets are also used to approximate the 
solution of linear and nonlinear integral equations [22] 
and Fred-holm integro-differential equations [23] with 
weakly singular kernels. Z. Abbas et al. [24] improved 
this method by using Legendre multi-wavelet. B-spline
wavelets are applied to solve Fredholm-Hammerstein
integral equations of the second kind in [25].

First time, Chebyshev wavelet as another
polynomial wavelet was discussed in [26, 27]. Using of 
chebyshev wavelet to solve integral equations
continued in some other papers [28, 29]. The main 
purpose of this article is using properties of Chebyshev 
wavelet for solving Eq. (1) and Eq. (2). Note that the 
proposed method is not a pure Galerkin method, but it 
is a version of it. The properties of Chebyshev wavelets 
are used to convert Eq. (1) and Eq. (2) into a system of 
algebraic equations. This system may be solved by 
using  an  appropriate  numerical  method, such as 
Newtons iteration method. We will notice that, these 
wavelets make the wavelet coefficient matrices sparse 
and accordingly leads to the sparsity of the coefficient 
matrix of the final system and provide accurate
solutions.

The  outline  of  the  paper is as follows: In Section 
2, wavelets and Chebyshev wavelets and their
properties are described. Then Chebyshev wavelet is 
used to approximate one and two dimensional
functions. Sections 3 and 4 present computational
methods for solving (1) and (2) utilizing Chebyshev 
wavelets  and  numerical  examples  are  presented  in 
last part of both sections. Finally, we conclude the 
article in Section 5.

CHEBYSHEV WAVELETS

Wavelets and Chebyshev wavelets: Wavelets consist 
of a family of functions constructed from dilation and 
translation of a single function called the mother
wavelet ψ(x). We have the following family of
continuous wavelets as 

            
1

2
a,b

t b
(t) | a | ( ),a,b , a 0

a

− −
ψ = ψ ∈ ≠ (4)

Chebyshev wavelets, n , m(t) (k,n,m,t)ψ = ψ  have
four  arguments;  n = 1,2,…, 2k-1, k can assume any 
non-negative integer, m is the degree of Chebyshev 
polynomial of the first kind and t denotes independent
variable in [0,1] [5]:

 
k

k
m m k 1 k 1

n , m

2 n 1 nT ( 2 t 2n 1), t(t) 2 2
0, otherwise

− −

 −α − + ≤ <ψ =  π



(5)

where

                         m

1, m 0
2, m 0

=
α =  >

(6)

and m = 0,1,…,M-1, n = 1,2,…,2k-1. Here Tm, m =
0,1,…, are Chebyshev polynomials of the first kind 
which are orthogonal with respect to the weight
function

2

1
w(t)

1 t
=

−

on the interval [-1,1] and satisfy the following recursive 
formula:

0 1 m m 1 m 2T ( t ) 1,  T(t) t,  T (t) 2tT (t) T (t),  m 2,3, .− −= = = − = …

For these functions we also have the following 
useful formula:

mT (cos ) cosm ,  m 0,1,2, .θ = θ = …

We should note that Chebyshev wavele ts are
orthonormal set with respect to the weight function

           

k 1

1 ,k k 1

2,k k 1 k 1
k

k 1

k 12 ,k

1w (t),       0 t
2

1 2
w (t),   t

w (t) 2 2

2 1
w (t), t 1

2
−

−

− −

−

−

 ≤ <

 ≤ <= 



− ≤ <

 
(7)
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where
k 1

n , kw (t) w(2 t n 1)−= − +  

Function approximation: A function
k

2
wf(x) L [0,1]∈ ,

may be expanded as

                   n,m n , m
n 1 m 0

f(x) c (x)
∞ ∞

= =

= ψ∑∑ (8)

where
                   

kn , m n,m wc f(x), (x)=< ψ > (9)

in which 
kw.,.< >  denotes the inner product in 

k

2
wL [0,1] .

The series (8) is truncated as

           
k 12 M 1

T
n,m n,m

n 1 m 0

f(x) c (x) C (x)
− −

= =

ψ = Ψ∑∑ (10)

where C and Ψ are 2k-1M vectors given by

k 1 k 1

k 1

T
1,0 1,1 1 , M 1 2,0 2,0 2,M 1 2 ,0 2 , M 1

T
1 2 2 M

C [c ,c ,...,c ,c ,c ,...,c ,...,c ,...,c ]

[c ,c , . . . , c ]

− −

−

− − −
=

=

and

            k 1 k 1

k 1

1,0 1,1 1,M 1 2,0 2,1

T
2,M 1 2 ,0 2 ,M 1

T
1 2 2 M

[ , ,..., , , ,...,

,..., ,..., ]

[ , ,..., ]

− −

−

−

− −

Ψ = ψ ψ ψ ψ ψ

ψ ψ ψ

= ψ ψ ψ

 (11)

It means if ψi = ψn,m or ci =  cn,m then we have 
i M(n 1) m 1= − + + . Similarly, by considering
i M(n 1) m 1 = − + +  and  j M(n 1)m 1 ′ ′= − + , we
approximate

k

2
wK(x,y) L ([0,1] [0,1])∈ ×   as

k 1 k 12 M 2 M
T

ij i j
i 1 j 1

K(x,y) K (x) (y) (x) (y)
− −

= =

ψ ψ = Ψ Ψ∑ ∑ K

where k 1ij 1 i , j 2 M[K ] −≤ ≤=K  with the entries

               
k kij i j w wK (x), K(x,y), (y)=<ψ < ψ > > (12)

Ordinary  calculation  of ci's and Kij's to
approximate   one   or   two   dimensional  functions
take considerable times. But using Gauss-Chebyshev
quadrature rule [30]

                  ( )
N1

p1 p 1
f(s)w(s)ds f cos

N− =

π ξ∑∫  (13)

where
p (2p 1)/2N, p 1,2, , Nξ = π − = …

can reduce number of operations and make
commodious  methods  to  calculate  inner  product  in 
(9) and (12).

       

1

i n,m n , m k0

N
km

p pk / 2
p 1

c c f(x) (x)w (x)dx

f(2 (cos 2n 1))cos(m )
2 N

−

=

= = ψ

πα
ξ + − ξ

∫

∑
(14)

and

 

1 1

ij n,m(x) n , m k k0 0

N N
p qm m

k 2 k k
q 1 p 1

p q

K K(x,y) (y)w (x)w (y)dxdy

cos 2n 1 cos 2n 1
K ,

2 N 2 2
cos(m )cos(m )

′ ′

′

= =

= ψ ψ

′ξ + − ξ + − πα α
 
 
′ξ ξ

∫ ∫

∑∑  (15)

SOLUTION OF FREDHOLM 
INTEGRAL EQUATIONS

In this section, the Chebyshev wavelet method is 
used to solve (1) by approximating functions ƒ(x), u(x) 
and K(x,y) in the matrix forms

tf(x) F (x)Ψ
 
                          m t[u(x)] U (x)Ψ (16)
 

tK(x,y) (x) (y)Ψ ΨK

where U a column vector function whose elements are 
nonlinear combinations of elements of the vector U, 
which is computed next. By substituting (16) into (1), 
we obtain

   ( )1T T T T

0
(x)U (x) (y) (y)dy U (x)FλΨ −Ψ Ψ Ψ Ψ∫K  (17)

Let L be the 2k-1M×2k-1M matrix with the following 
definition:

                      1 T

0
(y) (y)dy= Ψ Ψ∫L (18)

Therefore, replacing   with $=$ in (17) and using 
(18), we have

              T T T(x) U (x) U (x)FΨ λ −Ψ = ΨKL (19)

Now by taking inner product
kw., (x)< Ψ > upon

both    sides    of    (19)    and    using   orthonormality
of   Chebyshev   wavelets,   we   can   reduce  (1)  to
the system
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                         U U Fλ − =KL (20)

Notice that in some earlier works [27, 29], the
matrix L has been considered as identity matrix,
mistakenly, while

                  1 T
k0

(y) (y)w (y)dy IΨ Ψ =∫ (21)

but structure of L is different from (21).
Now we want to calculate k 1

i , jL ,1 i , j 2 M−≤ ≤  as  an 

entire of matrix L. Similar to (11) let  i M(n 1) m 1 = − + +  
and  j M(n 1)m 1 ′ ′= − + . By definition of L

                     1

i, j i j0
(y) (y)dy= ψ ψ∫L (22)

Pending n≠n′, supports of ψi and ψj have no 
intersection and i j(y) (y) 0ψ ψ =  hence, Li,j = 0.

Therefore, suppose that n=n ′. By substituting
k2 x 2n 1 cos− + = θ in (22) we have

            mm
i,j 0

C
L cosm cosm sin d

π′− ′= θ θ θ θ
π ∫ (23)

where

mm

1,    m m 0
C 2,    m 0 m

2,    otherwise
′

 ′= =
 ′= ≠ ≠



By calculating integral in (23), matrix L has the 
following form

                         
k 12 times

diag(A,A,...,A)
−

=L  (24)

where
mmA [A ], m,m 0,1, ,M 1′ ′= = … −

is an M×M matrix with the following entries

2 2

mm 4 2 2 2 2 4

mm

2(m m 1)C , m m  is even
(1 m 2m m 2m 2m m )

A
0,                        m m  is odd

′

′

′ − + − ′+ ′ ′ ′π + − − − += 
 ′+


 

 
 Clearly L is a sparse matrix. On the other hand 
choosing a threshold parameter ε0>0 [27] and replacing 

i , j[K ]=K with

ij ij 0
ij

K ,     |K |
K

  0,    otherwise
≥ ε

= 


by K in (20), we get the following system of nonlinear 
equations whose coefficients matrix is sparse:

                          U U Fλ − =KL (25)

Computation of U : For this purpose, we introduce 
the matrix

               k 1 k 1
k 1

ij M 2 M2
[ P ] ,i,j 1,2,...,M2− −

−
×

= =P (26)

where ij i jP ( x )′= ψ  and jx′ 's are the collocation points

                  k 1
j k 1

1
(j )

2x j 1,2,...,M2
M2

−
−

−
′ = = (27)

Consequently, P has the following form

                   ( )k 10 1 2 1diag A ,A,... ,A − −=P (28)

in which k 1
sA ,s 0,1,...,2 1−= − , is the M×M matrix

              s i j 1 s M i ( s 1 ) M , 1 s M j ( s 1 ) MA [P ] + ≤ ≤ + + ≤ ≤ += (29)

Now, we get:

                    t t mU (x) [U (x)]Ψ = Ψ (30)

By evaluating (30) at collocation points { }
k 1M2

j j 1
x

−

=
′ ,

we obtain the following system of equations

              t t m k 1
r rU P ( U P ) ,   r 1,2,...,M2 −= = (31)

where Pr is the r-th column of P. Finally, by using the 
representation of P in (28), (31) is reduced to  2k-1

system of M equations in M unknowns.

Example 3.1: Consider the Fredholm integral equation 
of the second kind:

    
52x y1 2 2x 2x 7 / 33

0
u(x) e [u(y)] dy (4/7)e (3/7)e ,

 0 x 1

− ++ = +

≤ ≤
∫ (32)

The exact solution of this problem is u(x) = e2x.
Table 1 shows the numerical results for this example 
with k = 3, M = 4 and k = 4, M = 4, with ε0 = 10-6.
Also,  the  approximate  solution  for  k = 2, M = 3 with 
ε0 = 10-4 are compared with exact solution graphically 
in Fig. 1.
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Table 1: Some numerical results for example 3.1

Exact Approximate solution Approximate solution
x solution k = 3, M = 4 with e0 = 10-6 k = 4, M = 4 with e0 = 10-6

0.1 1.2214028 1.2213838 1.2214045
0.2 1.4918247 1.4918468 1.4918249
0.3 1.8221188 1.8221535 1.8221184
0.4 2.2255409 2.2255090 2.2255435
0.5 2.7182818 2.7182108 2.7182767
0.6 3.3201169 3.3200670 3.3201206
0.7 4.0552000 4.0552577 4.0551970
0.8 4.9530324 4.9531283 4.9530274
0.9 6.0496475 6.0495601 6.0496537
1.0 7.3890561 7.3890930 7.3890524

Table 2: Some numerical results for example 3.2

x Exact solution Approximate solution k = 4, M = 4 Relative error Absolute error

0.0 0.0000000000 6.787e-7 --- 6.787e-7
0.1 0.1847732567 0.1847736927 2.3596e-6 4.360e-7
0.2 0.3677003201 0.3677026918 6.4500e-6 2.3717e-6
0.3 0.5469534435 0.5469568199 6.1731e-6 3.3764e-6
0.4 0.7207415888 0.7207420707 6.6861e-7 4.819e-7
0.5 0.8873283225 0.8873188634 1.0660e-5 9.4591e-6
0.6 1.0450491650 1.0450503780 1.1607e-6 1.213e-6
0.7 1.1923282210 1.1923356910 6.2650e-6 7.470e-6
0.8 1.3276939280 1.3277021230 6.1723e-6 8.195e-5
0.9 1.4497937570 1.4497949030 7.9045e-7 1.146e-6
1.0 1.5574077250 1.5574072890 2.79952e-7 4.36e-7

Fig. 1: Approximate   solution   for   example  3.1  with 
k = 2, M = 3 with ε0 = 10-4

Example 3.2: Consider integral equation

3 2

1 3

0

u(s) (1/3)sin(s) (1/9)sin(s) (1/3)scos(1)sin(1)

(2/3)scos(1) K(s,t)[u(t)] dt

= − +

+ + ∫

where
s, s t

K(s,t)
t, s t

<
=  ≥

with exact solution u(s) = sin (s). Table 2 shows the 
numerical results for this example with k = 4, M = 4 
and ε0 = 10-5. Absolute and relative errors in sample 
points are also reported.

INTEGRO-DIFFERENTIAL EQUATION

In this section, we use Chebyshev wavelet method 
to solve integro-differential equation (2). The
integration of the vector Ψ(t) can be written as:

                       t

0
(x)dx P (t)Ψ Ψ∫  (33)

where P is a 2k-1M×2k-1M matrix called operational
matrix for integral (OMI) and is given in [27]. The
following property of the product of two Chebyshev 
wavelet function vectors will be used:

                      t

0
(x)dx P (t)Ψ Ψ∫  (34)
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where  X  is  an  arbitrary  2k-1M vector  and X   is  a 
2k-1M×2k-1M matrix, which called Product Operation 
Matrix  (POM)  of  Chebyshev  wavelet  that  is  given 
in [27].

In this case we approximate with u′(t) Chebyshev 
wavelet series

                  
k 12 M

T
i i

i 1

u ( t ) c (t) C (t)
−

=

′ = Ψ = Ψ∑ (35)

Direct conclusion of (35) is

                     
k 12 M

i i
i 1

u(t) c s ( t ) u(0)
−

=

= +∑ (36)

where
t

i i0
s ( t ) (x)dx.= ψ∫  Then  scalar  u(0)  can  be 

written as:

           
k 1

T
1 1 1 0

2 times

u(0) [ , , , ] (t) U (t)
−

α α … α Ψ = Ψe e e  (37)

where k u(0)
2
π

α =  and 1 M 1[1,0,0, ,0] .×= …e

Therefore, we can approximate u by

                    T T
0u(t) C P (t) U (t)Ψ + Ψ (38)

and

 T T Tq(s) Q (s),    f(s) F (s),    K(s,t) (s) (t)Ψ Ψ Ψ ΨK   (39)

Substituting (35),(38) and(39) into (2) and
replacing  with =, gives

 
T T T T

0
1 T T T T

00

(s)C Q (s) (s)(P C U )

(s) (t) (t)[ (P C U ) C]dt (s)F

Ψ + Ψ Ψ +

= Ψ Ψ Ψ α + + β +Ψ∫ K
(40)

Utilizing (33), (34) and L, definition (24), we obtain

 T T T T
0 0(s)[C Q(P C U ) ] (s)[ ( (P C U ) C) F]Ψ + + = Ψ α + +β +KL (41)

Now, by taking inner product
kw(s),.< Ψ > from

both sides of (41) lead to the following linear syste

     T T
0 0[I QP ( P I)]C QU U F+ − α + β = − + +KL KL  (42)

Solving (42) gives unknown vector C, so

                  T
0u(t) (P C U ) (t)+ Ψ (43)

Fig. 2: Approximate   solution   for  example  4.1  with 
k = 2, M = 3, ε0 = 10-4

Fig. 3: Distribution of errors for Example 4.2

Example 4.1: Consider equation (2) with
q(s) 2s, K(s,t) s t, 0, 1, 0= = + α = β = γ =  and

4 3 2 17
f(x) 2x 2x 3x

12
= + + −

In Table 3, the results of Chebyshev wavelet
method are compared with exact solution, which is 
uex(s) = s2(1+x) [14]. Table 4 reports error of
approximation solution in L2-norm. This is 

1
1 2 2

ex 2 ex0
u u ( |u(s) u (s)| ds)− = −∫ 

Also, the approximate solution for k = 3, M = 3 
with ε0 = 10-4 is compared with exact solution
graphically in Fig. 2.
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Table 3: Some numerical results for example 4.1

x Exact solution Approximate solution k = 3, M = 3, ε0 = 10-4 Approximate solution k = 4, M = 4, ε0 = 10-4

0.1 0.01100000 0.010719840 0.01099999
0.2 0.04800000 0.048450063 0.04799999
0.3 0.11700000 0.116534354 0.11699999
0.4 0.22400000 0.224264710 0.22399999
0.5 0.37500000 0.375474480 0.37500000
0.6 0.57600000 0.575705322 0.57600000
0.7 0.83300000 0.833436680 0.83300000
0.8 1.15200000 1.151522503 1.15199999
0.9 1.53900000 1.539254613 1.53899999
1.0 2.00000000 1.999487303 1.99999999

Table 4: Error for example 4.1

k M ||u-uex||2
2 3 7.269439334e-6
3 3 1.152331560e-7
4 3 1.807189679e-9
3 4 5.854994865e-19
4 4 9.393085527e-20

Table 5: Some numerical results for example 4.2

x Exact solution Approximate solution k = 3, M = 3, ε0 = 10-4 Approximate solution k = 4, M = 4, ε0 = 10-4

0.1 0.0953101798 0.0952889907 0.0953101493
0.2 0.1823215568 0.1825449463 0.1823217648
0.3 0.2623642645 0.2624945635 0.2623644469
0.4 0.3364722366 0.3367692254 0.3364722266
0.5 0.4054651081 0.4058829389 0.4054652876
0.6 0.4700036292 0.4704350184 0.4700036824
0.7 0.5306282511 0.5312459776 0.5306284418
0.8 0.5877866649 0.5884913528 0.5877868810
0.9 0.6418538862 0.6427604341 0.6427604341
1.0 0.6931471806 0.6939446730 0.6931473158

Table 6: Error for example 4.2

k M ||u-uex||2
3 3 2.763993163e-7
4 3 3.688787084e-11
5 3 5.811129897e-13
3 4 5.854994865e-19
4 4 9.393085527e-20

Example 4.2: Consider

1

2 0

1 tu( t ) u(t) u(s)ds
(ln2) s 1

1 1t ln(1 t),u(0
2 1

) 0
t

′ − −
+

−= + − + =
+

∫

with exact solution u(t) = ln(t+1) [21].

In Table 5, the results of chebyshev wavelet
method compared with exact solution. Table 6 reports 
error value of approximation solution in L2-norm.
Distribution of errors for different k and M are
graphically shown in Fig. 3. It reveals that little
increase in k and M, improve approximation solution 
considerably.

CONCLUSION

The Chebyshev wavelets have been applied for 
solving integral and integro-differential equations by 
reducing each equation into a system of algebraic
equations. Because of some good properties of
Chebyshev wavelets like having vanish moments and 
local  support,... using  Chebyshev  wavelets  give  high 
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accuracy approximation of solution. Numerical
examples show accuracy of this method compared with 
some other methods.
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