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INTRODUCTION

We consider the following nonlinear fractional
differential equation

D u f(t,u) ,0 t 1,u(0) 0α = < < = (1)

where 0<α<1, Dα is the Riemann-Liouville fractional 
derivative defined as follows

t

0

1 d
D u(t) (t s) u(s)ds

(1 )dt
α −α= −

Γ −α ∫ (2)

where Γ denotes the Gamma function
and f:[0,1] [0, ) [0, )× +∞ → +∞ is a given continuous
function. Fractional differential equation (1) can be
extensively applied to the various physics, mechanics, 
chemistry and engineering etc. [1-5]. Hence, in recent 
years, fractional differential equations have been of
great interest and there have been many results on the 
existence and uniqueness of solutions of FDE. D.
Delbosco and L.Rodino proved the existence of a
solution for nonlinear fractional equation (1) using the 
Banach contraction principle and the Schauder fixed 
point theorem respectively [6]; Shuqin Zhang obtained 
the existence and uniqueness of a positive solution 
utilizing the method of upper and lower solutions and 
the cone fixed-point theorem [7]; Qingliu Yao
considered the existence of a positive solution for
fractional order differential equation controlled by the 

power function employing the Krasnosel’skii fixed-
point theorem of cone expansion-compression type [8]. 
Recently, V. Lakshmikantham obtained the existence of 
a local and global solution for equation (1) using the 
classical differential equation theorem [9]. However, in 
the previous works, the nonlinear term has to satisfy the 
monotone or other control conditions. In fact, the
nonlinear fractional differential equation with non-
monotone  term  can  respond  better  to  impersonal 
law, so it is very important to study this kind of
problems. In this paper we investigate the nonlinear 
fractional differential equations with non-monotone
term by constructing a pair of upper and lower control 
functions and exploiting the method of upper and lower 
solutions as well as the Schauder fixed-point theorem. 
The existence and uniqueness of a positive solution for 
equation (1) is obtained under as few possible as 
condition. This work is motivated from the references 
[7, 10]. Other related results on the fractional
differential equations can be found in refs [11-22].

This paper is organized as follow. In section 2 we 
consider the existence of positive solution for equation 
(1) utilizing the method of upper and lower solutions 
and the Schauder fixed-point theorem. Section 3 deals 
with the uniqueness of positive solution and gives an 
example to illuminate our results.

EXISTENCE OF POSITIVE SOLUTION

Let X = C[0,1] be the Banach space endowed with 
the maximum norm 
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0 t 1| |u(t)| | max |u(t ) |≤ ≤=

and define one positive cone

{ }K u X:u( t ) 0,0 t 1= ∈ ≥ ≤ ≤

The positive solution which we consider in this 
paper is such that 

u(0) 0,u(t) 0,0 t 1,u(t) X= > < ≤ ∈

According to Proposition 2.4 in [4], equation (1) is 
equivalent to the integral equation

t 1

0

1
u(t) ( t s) f(s,u(s))ds,0 t 1

( )
α−= − ≤ ≤

Γ α ∫ (3)

where Γ denotes the Gamma function. It is easy to 
verify that to solve the integral equation (3) is also 
equivalent to solve the following fixed point equation

Tu(t) u(t),u(t) C[0,1]= ∈

where operator T: K→K is defined as

t 1

0

1
(Tu)(t) (t s) f(s,u(s))ds,0 t 1

( )
α −= − ≤ ≤

Γ α ∫ (4)

First, we have the following compactness Lemma.

Lemma 2.1: [7] The operator T: K→K is completely 
continuous.

Proof: The operator T: K→K is continuous in view of 
the assumption of nonnegativeness and continuity of 
ƒ(t,u).

Let M⊂K be bounded, i.e., there exists a positive 
constant l such that ||u||≤l for any u∈M Since ƒ(t,u) is a 
given continuous function, we have 

0 t 1 ( t , u ) Dmax f(t,u(t)) max f(t,u)≤ ≤ ∈≤

for any u∈M, where

{ }D (t,u)0 t 1, 0 u l= ≤ ≤ ≤ ≤

Let
( t , u ) DL max f(t,u)∈=

then for any u∈M, we have

t 1

0

t 1

0

t 1

0

1
Tu(t) (t s) f(s,u(s))ds

( )
1

(t s) f(s,u(s))ds
( )
L L(t s) ds t
( ) (1 )

α−

α−

α− α

= −
Γ α

≤ −
Γ α

≤ − ≤
Γ α Γ + α

∫

∫

∫
Thus

L
Tu

(1 )
≤
Γ + α

Hence the operator T: K→K is uniformly bounded.
Now, we will prove that the operator T is

equicontinuous. For each u∈M, any ε>0, t1, t2∈[0,1],
t1<t2. Let 1/( (1 )/2L) αδ = ε Γ + α , then when |t2-t1|<δ, we 
have

1 2

1 1 2

1

t t1 1
1 2 1 20 0

t t t1 1 1
1 2 10 0 t

1 1Tu(t ) Tu(t ) (t s) f(s,u(s))ds (t s) f(s,u(s))ds
( ) ( )

1 1 1(t s) f(s,u(s))ds (t s) f(s,u(s))ds (t s) f(s,u(s))ds
( ) ( ) ( )

α− α−

α− α − α−

− = − − −
Γ α Γ α

= − − − − −
Γ α Γ α Γ α

∫ ∫

∫ ∫ ∫
1 2

1

t t1 1 1
1 2 20 t

1 1
(t s) (t s) f(s,u(s))ds (t s) f(s,u(s))ds

( ) ( )
α− α− α−≤ − − − + −

Γ α Γ α∫ ∫
1 2

1

1 1 2

1

t t1 1 1
1 2 20 t

t t t1 1 1
1 2 20 0 t

1 2 1 2 2 1 2 1

L L
((t s) (t s) )ds (t s) ds

( ) ( )
L

( (t s) ds (t s) )ds ( t s) ds)
( )

L 2L 2L[t ( t t ) t (t t ) ] (t t )
(1 ) (1 ) (1 )

α− α− α−

α− α− α−

α α α α α α

≤ − − − + −
Γ α Γ α

= − − − + −
Γ α

= + − − + − ≤ − < δ = ε
Γ + α Γ + α Γ + α

∫ ∫

∫ ∫ ∫

The Arzela-Ascoli Theorem implies that T is  completely continuous. The proof is therefore completed.
Let f(t,u):[0,1] [0, ) [0, )× +∞ → +∞ is a given continuous function. For any u∈[0,b] we define the upper-control

function
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0 u
H(t,u) supf( t, )

≤η≤
= η

and the lower-control function 

u b
h(t,u) inf f ( t , )

≤η≤
= η

It is obvious that H(t, u) and h(t, u) are
monotonous non-decreasing with respect to u. And we 
have

h(t,u) f(t,u) H(t,u)≤ ≤

Definition 2.1: If ˆu(t),u(t) K,∈ ˆ0 u(t) u(t) b≤ ≤ ≤
satisfy

D u(t) H(t,u(t))α ≥   (or
t 1

0

1
u(t) ( t s) H(s,u(s))ds, 0 t 1

( )
α−≥ − ≤ ≤

Γ α ∫  )

and
ˆ ˆD u(t) h(t,u(t))α ≤  (or

t 1

0

1ˆ ˆu(t) (t s) h(s,u(s))ds, 0 t 1
( )

α−≤ − ≤ ≤
Γ α ∫ )

then the functions u(t) and û(t) are called a pair of 
upper and lower solutions for equation (1).
Now, we give the main result of this paper.

Theorem 2.1: Assume f(t,u):[0,1] [0, ) [0, )× +∞ → +∞ is a 
continuous function and u(t) , û(t) is a pair of upper 
and lower solution of equation (1), then the initial value 
problem (1) exists at least one solution u(t)∈C[0,1]
satisfying

ˆu(t) u(t) u(t)≥ ≥ . t∈[0,1]
Proof Let

{ }ˆS v K u(t) v(t) u(t),t [0,1]= ∈ ≤ ≤ ∈

then we have ||v||≤b. Hence S is a convex, bounded and 
closed subset of the Banach space X. According to 
Lemma 2.1, the operator T: K→K is completely
continuous. Thus the rest is to prove that T: S→S.
For any v(t)∈S, we have ˆu(t) v(t) u(t)≥ ≥ , then 

t 1

0

t 1

0

t 1

0

1
Tv(t) (t s) f(s,v(s))ds

( )
1

(t s) H(s,v(s))ds
( )
1 (t s) H(s,u(s))ds u(t)
( )

α−

α−

α−

= −
Γ α

≤ −
Γ α

≤ − ≤ ¬
Γ α

∫

∫

∫   

and
t 1

0

t 1

0

t 1

0

1
Tv(t) (t s) f(s,v(s))ds

( )
1

(t s) h(s,v(s))ds
( )
1 ˆ ˆ(t s) h(s,u(s))ds u(t)
( )

α−

α−

α−

= −
Γ α

≥ −
Γ α

≥ − ≥
Γ α

∫

∫

∫

Hence ˆu(t) Tv(t) u(t),1 t 0≥ ≥ ≥ ≥ , namely, T: S→S.
According to the Schauder fixed point theorem, the 
operator T has at least one fixed point u(t)∈S, 0≤t≤1.
Therefore the initial value problem (1) exists at least 
one solution u(t)∈C[0,1] and ˆu(t) u(t) u(t)≥ ≥ .t∈[0,1].

Corollary 2.1: Assume f(t,u):[0,1] [0, ) [0, )× +∞ → +∞ is
a continuous function and there exists 2 1k k 0≥ > , such 
that

1 2k f(t,l) k (t,l) [0,1] [0, )≤ ≤ ∈ × +∞ (5)

then the initial value problem (1) has at least a positive 
solution u(t)∈C[0,1] satisfying

1 2k k
t u(t) t

(1 ) (1 )
α α≤ ≤

Γ + α Γ + α

Proof: By the assumption (5) and the definition of
control function, we have

1 2k h(t,l) H(t,l) k , ( t , l ) [0,1] [a,b]≤ ≤ ≤ ∈ ×

Now, we consider the equation

2D w(t) kα = , w(0) = 0 (6)

Obviously, the equation (6) has a positive solution 

t 1 2
2 20

1 k
w(t) I (k ) (t s) k ds t

( ) (1 )
α α− α= = − =

Γ α Γ + α∫
and

2w(t) I (k ) I (H(t,w(t))α α= ≥

namely, w(t) is a upper solution of equation (1). In the 
similar way, we obtain 1v(t) I ( k )α= is the lower solution 
of equation (1). By using Theorem 2.1, one gets that the 
initial value problem (1) has at least one solution
u(t)∈C[0,1] satisfying

1 2k k
t u(t) t

(1 ) (1 )
α α≤ ≤

Γ + α Γ + α
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Corollary 2.2: Assume f(t,u):[0,1] [0, ) [a, )× +∞ → +∞ is
a continuous function, where a is a positive constant 
and also assume that

u
a limf(t,u(t)) , t [0,1]

→+∞
< <+∞ ∈ (7)

then the initial value problem (1) has at least one
positive solution u(t)∈C[0,1].

Proof: By assumption (7), there exist positive constants 
N, R such that for any u>R one has ƒ(t,u)≤N. Let

0 t 1,0 u R
C max f(t,u)

≤ ≤ ≤ ≤
=

Then we have a f(t,u) N C≤ ≤ + , 0<u<+∞. By corollary 
2.1, the initial problem (1) has at least one positive 
solution u(t)∈C[0,1] satisfying

a N C
t u(t) t

(1 ) (1 )
α α+
≤ ≤

Γ + α Γ + α
(8)

Corollary 2.3: If f(t,u):[0,1] [0, ) [a, )× +∞ → +∞ is a
continuous function, where a is a positive constant and

u 0 t 1

f(t,u(t))
a lim max

u(t)→+∞ ≤ ≤
< <+∞ (9)

then the initial value problem (1) has at least one
positive solution u(t)∈C[0,δ], where 0<δ<1.

Proof: According to 

u 0 t 1

f(t,u(t))
a lim max

u(t)→+∞ ≤ ≤
< <+∞

there exists M>0, c>0 such that for any u(t)∈X one has

f(t,u(t)) Mu(t) c≤ +

By the definition of control function, we have

H(t,u(t)) Mu(t) c≤ +  (10)

Next, we consider the equation

D u(t) Mu(t) c, 0 1,0 t 1α = + < α < < <  (11)

According to proposition 4.2 in [4], the equation 
(11) is equivalent to the integral equation

t 1

0

1u(t) I (Mu(t) c) (t s) (Mu(s) c)ds, 0 t 1
( )

α α−= + = − + ≤ ≤
Γ α ∫

Let A: K→K is an operator defined as follow

t 1

0

1
Au(t) (t ) (Mu(s) c)ds, 0 t 1

( )
α−= − τ + ≤ ≤

Γ α ∫ .

By Lemma 2.1, the operator A is completely
continuous.
Let

s
R

c
B u(t) K u t R

(1 s)

  = ∈ − ≤ <+∞ 
Γ +  

then BR is convex, bounded and closed subset of the 
Banach space C[0,δ], where 0<δ<1.
For any u∈BR, we have

c c c
u t R R R

(1 ) (1 ) (1 )
α α≤ + ≤ δ + ≤ +

Γ + α Γ + α Γ + α

then

t 1

0

c M
Au(t) t (t s) u(s)ds

(1 ) ( )
M

u(t) t
(1 )

M c( R)
(1 ) (1 )

α α−

α

α

− ≤ −
Γ + α Γ α

≤
Γ + α

≤ + δ
Γ + α Γ +α

∫

Taking

1 12(1 ) R( (1 ))
min [ ] ,[ ] ,1

2M 2Mc
α α

 Γ + α Γ + α δ <  
  

then
c

Au(t) t R
(1 )

α− ≤
Γ + α

Hence, by the Schauder fixed theorem, the operator 
A has at least one fixed point and then the equation (11) 
has at least one positive solution w*(t) where 0<t<δ.
Hence

* *

t 1 *

0

w ( t ) I (Mw (t) c)
1

(t s) (Mw (s) c)ds,0 t 1
( )

α

α−

= +

= − + < <
Γ α ∫

which combining with (10), yields that

t* 1 *

0

1
w ( t ) ( t ) H(s,w(s)ds,0 t 1

( )
α−≥ − τ < <

Γ α ∫

Thus, w*(t) is the upper solution of the initial value 
problem (1) and *v ( t ) I (a) 0α= > is the lower solution of 
the  equation (1). By Theorem 2.1, the system (1) has at 
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least one positive solution u(t)∈C[0,δ], where 0<δ<1
and * *v ( t ) u(t) w ( t )≤ ≤ .

Corollary 2.4: Assume f(t,u):[0,1] [0, ) [a, )× +∞ → +∞  is 
a continuous function, where a is a positive constant 
and there exists two constants d>0, c>0 such that

{ }max f(t, l):(t ,l) [0,1] [0,d] c (1 )∈ × ≤ Γ + α (12)

then the initial value problem (1) has at least one
positive solution u(t)∈C[0,1] satisfying 0<||u||≤c.

Proof: According to the definition of control function, 
one has

a H(t,l) c (1 ),(t,l) [0,1] [0,d]≤ ≤ Γ + α ∈ × .

By corollary 2.1, the initial problem (1) has at least 
a positive solution u(t)∈C[0,1] satisfying 0<u(t)≤c.
Hence 0<||u||≤c.

UNIQUENESS OF POSITIVE SOLUTION

In this section, we shall prove the uniqueness of 
the positive solution by using the Banach contraction 
mapping principle:

Lemma 3.1: If the operator A: X→X is the contraction 
mapping, where X is the Banach space, then A has a 
unique fixed point in X.

Theorem 3.1: If there exists a pair of positive upper 
and lower solutions of the equation.(1) and for any 
u(t),v(t) X , 0 t 1∈ < < , there exists l>0 such that

f(t,u) f(t,v) l u v− ≤ − (13)

then the initial problem (1) has a unique positive
solution u(t)∈C[0,1] when

l
1

(s 1)
<

Γ +

Proof: It follows from Theorem 2.1 that the initial
value problem (1) has at least one positive solution in S. 
Hence it suffices to prove that the operator T defined in 
(4) is contract in X. In fact, for any 1 2u ( t ) , u ( t ) X∈   by 
assumption (13), we have 

t s 1
1 2 1 20

t s 1
1 2 0

1 2

1
T(u)( t) T(u )(t) (t ) f ( , u ( )) f ( , u ( ) ) d

(s)
l u ( ) u ( ) (t ) d
(s)

l u ( ) u ( )
(1 s)

−

−

− ≤ −τ τ τ − τ τ τ
Γ

≤ τ − τ −τ τ
Γ

≤ τ − τ
Γ +

∫

∫

Thus, when l
1

(s 1)
<

Γ +
, the operator T is the contraction

mapping. Therefore, the initial value problem (1) has a 
unique positive solution u(t)∈C[0,1].
Finally, we give an example to illuminate our results.

Example 3.1: We consider the fractional order
differential equation

1
2 u(t)

D u(t) 1 , 0 t 1, ,u(0) 0
u(t) sin[u(t) 1]

= + ≤ ≤ =
+ +

(14)

where
u

f(t,u) 1
u sin(u 1)

= +
+ +

Due to
u
limf ( t , u ) 2
→+∞

= and f(t,u) 1, u [0, )≥ ∈ +∞ , by

corollary 2.2, then the equation (14) has a positive
solution. Nevertheless the function ƒ(t,u) is not
monotonous and ƒ(t,u) is neither contract nor controlled 
by two power functions. Hence the conclusions of [5-7]
can not be applied to the above example.

CONCLUSIONS

This paper presents the use of upper and lower 
solutions method for systems of nonlinear fractional 
differential equations. This method is a powerful tool 
for solving nonlinear differential equations in
mathematical physics, chemistry and engineering etc. 
The technique constructing a pair of upper and lower 
control functions with respect to nonlinear term without 
monotone demand provides a new efficient method to 
handle the nonlinear structure. 

We have dealt with the problem of positive
solution for a class of nonlinear fractional differential 
equation. The general sufficient conditions have been 
obtained to ensure the existence and uniqueness of the 
positive solution for the nonlinear fractional differential 
equation. These criteria generalize and improve some 
known results [5-7]. In particular, an example is given 
to show the effectiveness of the obtained results. In 
addition, the sufficient conditions that we obtained are 
very simple, which provide flexibility for the
application and analysis of nonlinear fractional
differential equation.

REFERENCES

1. Mainardi,  F.,  1996.  The  fundamental  solutions 
for the fractional diffusion-wave equation. Appl. 
Math. Letters., 9: 23-28.



World Appl. Sci. J., 18 (11): 1540-1545, 2012

1545

2. Buckwar, E. and Y. Luchko, 1998. Invariance of a 
partial differential equation of fractional order
under lie group of scaling trabsformations. J. Math. 
Anal. Appl., 227: 81-97.

3. Zhu, Z.Y., G.G. Li and C.J. Cheng, 2002. Quasi-
static and dynamical analysis for viscoelastic
timoshenko beam with fractional derivative
constitutive relation. Appl. Math. Mech., 23: 1-15.

4. Tong, D.K., R.H. Wang and H.S. Yang, 2005.
Exact solutions for the flow of non-Newtonian
fluid with fractional derivative in an annular pipe. 
Sci. China. Ser G., 48: 485-495.

5. Vieru, D., F. Corina and F.C. Fetecau, 2008. Flow 
of a viscoelastic fluid with the fractional Maxwell
odel between two side walls perpendicular to a 
plate. Appl. Math. Comput., 200: 459-464.

6. Delbosco, D. and L. Rodino, 1996. Existence and 
uniqueness for a nonlinear fractional differential 
equation. J. Math. Anal. Appl., 204: 609-625.

7. Zhang, S.Q., 2000. The existence of a positive
solution for a fractional differential equation. J.
Math. Anal. Appl., 252: 804-812.

8. Yao, Q.L., 2005. Existence of positive solution for 
a class of sublinear fractional differential
equations. Acta. Math. Appl. Sinica, (Chinese), 28: 
429-434.

9. Lakshmikantham, V. and A.S. Vatsala, 2008. Basic 
theory of fractional differential equations.
Nonlinear Anal: TMA, 60: 2677-2682.

10. Wang, C.Y., 2008. Existence and stability of
periodic solutions for parabolic systems with time
delays. J. Math. Anal. Appl., 339: 1354-1361.

11. Kilbas, A.A., H.M. Srivastava and J.J. Trujillo,
2006. Theory and Applications of Fractional
Differential Equations. Elsevier Science B.V.,
Amsterdam.

12. Lakshmikantham, V., S. Leela and J. Vasundhara 
Devi, 2009. Theory of Fractional Dynamic
Systems. Cambridge Academic Publishers,
Cambridge.

13. Zhang,  S.Q.,  2009.  Monotone  iterative  method 
for initial value problem involving Riemann-
Liouville fractional derivatives. Nonlinear Anal:
TMA, 71: 2087-2093.

14. Belmekki, M., J.J. Nieto and R. Rodriguez-Lopez,
2009. Existence of periodic solutions for a
nonlinear fractional differential equation.
Boundary Value Problems, 2009, Art. ID. 324561.

15. Chang, Y.K. and J.J. Nieto, 2009. Some new
existence results for fractional differential
inclusions with boundary conditions. Math.
Comput. Modelling, 49: 605-609.

16. Bonilla, B., M. Rivero, L. Rodriguez-Germa and 
J.J.  Trujillo, 2007. Fractional differential
equations as alternative models to nonlinear
differential  equations.  Appl.  Math.  Comput., 
187: 79-88.

17. Kosmatov, N., 2009. Integral equations and initial 
value  problems  for  nonlinear  differential
equations of fractional order. Nonlinear Anal:
TMA, 70: 2521-2529.

18. Bai, Z.B. and T.T. Qiu, 2009. Existence of positive 
solution for singular fractional differential
equation. Appl. Math. Comput., 215: 2761-2767.

19. Jumarie, G., 2010. An approach via fractional
analysis to non-linearity induced by coarse-
graining   inspace.  Nonlinear  Analysis:  RWA, 
11: 535-546.

20. Agarwal, R.P., V. Lakshmikantham and J.J. Nieto, 
2010. On the concept of solution for fractional
differential equations with uncertainty. Nonlinear 
Anal: TMA, 72: 2859-2862.

21. Wei, Z. and J. Che, 2010. Initial value problems 
for fractional differential equations involving
Riemann-Liouville sequential fractional derivative. 
J. Math. Anal. Appl., 367: 260-272.

22. Krishnan, B. and J.J. Trujillo, 2010. The nonlocal 
Cauchy problem for nonlinear fractional
integrodifferential equations in Banach spaces.
Nonlinear Anal: TMA, 72: 4587-4593.


