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Abstract: Recently, properties of holomorphic helix of Kdhler Frenet curves on n-dimensional M Kéhler
manifold studied by S. Maeda, H. Tanabe and T. Adachi. In this paper we give some characterizations for
complex torsions by 7;; in the Kihler manifold to be general helix. And by considering x;, k, curvatures of
order 3. Curvatures of Frenet curve on M Kéhler manifold are not constant but their ratios are constant. We
investigate relationship between t,, and 1,3 complex torsions which are not seperately constant but their

ratios are constant.
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INTRODUCTION

Let M be a n-dimensional Kihler manifold, with
complex structure J and Riemannian metric g. For a
helix y on M of order d(<2n) with the associated Frenet
frame {V),..,Vq} and we define t;; called complex
torsions by =g(V{(s),JV(s)) for 1I<ig<d, y is a
holomorphic helix if all the complex torsions are
constant [1]. They are used curvatures k; and complex
torsions T;; which are constant. A classical result stated
by M. A. Lancert in 1802 and first proved by B. De
Saint Venant in 1845 is a necessary and sufficient
condition that a curve be a general helix is the ratio of
curvature of torsion to be constant [2, 3]. In a Kéhler

T

. . . T
manifold, a Frenet curve is called a general helix if —=
T3

is constant and its first and second curvatures are not
constant.

If its first and second curvatures are constant and
its third curvature is zero then the Frenet curve is called
a helix. We obtained the relations between the complex
torsions and their own derivations.

PRELIMINARIES

Complex torsions: A smooth curve vy v(s)
parametrized by its arc-length s is called a helix of
proper order d if there exist an orthonormal system

{V, =1, V..., V;} of vector fields along y and positive
constants k,(s),K,(s),...,k, ,(s) which satisfy the system
of ordinary differential equations

DV(s)=-x; (9)V, ,(5)+ K,(s)V,,(s), j=1,2,....d
where V, =V,,, =0 and x,=«,=0 [4].

Let M be a complex n-dimensional Kihler
manifold (K-manifold) with complex structure J.
{V,.., V, IV,,...,JV,} system is a basis of tangent
space of M. A smooth curve ¥y v(s) on M
parametrized by its arc-length s is called a Kéihler
Frenet curve, if it satisfies the following diferential
equation

D,y= «(s)ly or Dy =—«(s)ly

for some positive C* function x = «(s), where D,

denotes the covariant differentiation along y with
respect to the Riemannian connection D of M [5].

For a Frenet curve y in a K-manifold M of order d
with associated Frenet frame {V,,...,V,JV,....,JV}, we

define functions 1;; called complex torsions by [5].

‘Ci,j(s){

0
(Vi(8),JVi(s))

,i=j,1=0,j>d
,1<i<j<d

e @<
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Definition 1: For a curve y on a K-manifold M of order
d we call a holomophic helix (H-helix) if all its
complex torsions are constant functions.

Let a curve y on a K-manifold M of order d. In this
stuation for [6].

DV (s)= -1 ,(s)V; () +x;(8)V,,(8), j=1,2,....d
and

7,(8)=V, (5).V(s))

D,1;(8)= =K T ;(8) + KT, ;(8) =K, F 1 (8)+ KT 5,(8) 2.1
For complex torsions of helix on Kmanifold of
order 3 fromd =3, 1<ij<3,i=j=0,i=1,2,j= 1,23

and from (2.1) we obtain

Dt ,=®"T, D =—wT,+KT; Din;=-K1;

or
D1, 0 x, 0fr,
Dt =k, 0 |1,
Dy":z,z 0 - 0 Tys

When y a Frenet curve on K-manifold M of order 2 and
71 is constant. Really for 1, , =(V,JV,)

Di(V,JV;)=(DV,JV,) +(V,,JQ V;)
=k(V,,IV,)—k(V,,JV}) =0

Then a Frenet curve of order 2 is a H-helix.
HOLOMORPHIC HELICES

If we give theorems and results which they known
related to holomorphic helices of order 3 and 4.

T

P2k

KT = Ka1 U -1

KT+ KT o = KT 4 j=3,5,..
KiiTicia TR Tiga = KiTaa i=3,5,...
KTy FKLT 0 T KT H KT i=2,3,..

0 i=1,2,..

Theorem 1: The complex torsions of a H-helix of
proper order on a K-manifold satisfy

i‘c?.i + itij <1
i i

j=+1

For everyi[1].
We take H-helices of order 3 and choose
orthonormal vectors {V;, V,, V3} which satisfy
Vi, V) = (V, V) = (V) =1
(V, V) = (V, V) = (V,V,) =0
VLIV = VIV = VIV = 1
VLIV, AVLIV;) = dVJV) = 0

And then we set V|,V, and V; as:
V. =(1,0,...,0)
= Al-7,0,...0)

ip =T -p’ 0,...,0)

=(0,——,
v \/1—‘1:2 ‘\/1—‘52

2

For positive constants T = 1, and p = 1,3 with
<1, v +p°<1 then we obtain orthonormal vectors
and satisfy

(Vi IVy)=t(V,IVy)=p, (V,JV;)=0

Corollary 1: The complex torsions T;; of a Hhelix v,
7;; =0 when itj is even [7].

Theorem 2 The complex torsions of a holomorphic
helix of odd and even proper order d on a Kihler
manifold satisfy the following relations [1].

,d =2k, k=1,2,...,(d=1)/2(dodd)
k=1,2,...,(d—2)/2(deven)
.,d=2(dodd), j=j=3,5,...,d-1(deven)
,d—2(dodd), i=2,4,...,d—2(deven)
,d-3 j=i+2,i+4,...,d-1

Holomorphic helices of order 3: Theorem 3 For {V;,V,,V3} orthonormal frame and «;, k, positive constant on a
K-manifold M. There is a H-helix y with curvatures k, k; if and only if [1].

{Klrz,z +15,7,=0

T,;=0

forn>3 and

K,

2T S T
K +K5
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Theorem 4: K-manifold M of order 2 and all complex

torsions of H-helix of order 3 with curvatures x; and x,
satisfy [1].

or

1

W T Te e T TS
K +K5 K +K5

A classical result stated by M. A. Lancert in 1802
and first proved by B. De Saint Venant in 1845 is a
necessary and sufficient condition that a curve be a
general helix is the ratio of curvature of torsion to be
constant [2, 3]. Adhering to this definition we will give
the following definition.

Definition 2 For Frenet curve y on a K-manifold of

. . T, . .
order 3, if the ratio of - is constant, then y is called a
T3

holomorphic helix.

Proof: if y is a general helix

Theorem 5: If y is a general helices of order 3 on K-

. K, .
manifold, then — is constant.
K,

Proof: 7, =-1,;, 1,=0 (itjeven), -7 ,+K1,; =0.

ii>
T, T
then —2=—L from hypothesis —2 =constant then

Ty Ky T23

K
— = constant [1].
Ky

Theorem 6: y be a general helix on K-manifold of
order 3. Theny is a general helix if and only if

® ) -
D;’t,, +ADJ't, +uD,1,, =0

’

3
here A = 2K and
K,

K” 3 K' 2
h= ) -2 20D

K, K,

D"‘/TI T KT
2 _ ’ 2
DT, = KT;- K, +KKT;,
3) _ 2 ’ '
D't , = KT+ K(-KT, +KT,5) —X K,T,,
i« 1 K
_ 1| K @ 2 2, 2
= 3K2 {?D*{TI,Z +K—an 1:1'2] + {K— - (K1 + Kz) Dytl,z
2 2
and we obtained
3] ) 3(x))’
&) PRNG)) 2 2 2 2 _
D't T D71, +9(k + K3) o —D;1,,=0
2 2 2
conversely
1 K 1
_ — _ K @
D, =x1,=>1,=—D7,, D7,=-—D,1,+—D1,
K, K, K,
and
’
! ! !
@ Ky 2@ K no |
D;’ T, = [— FJ D‘/Tl.z -—=D T2 —FD i T2 +K_D.‘J T (31)
2 2 2
we know that
D, KTz
2 ’ 2
DT, = KT, - KT, +KKT;
®) _ '
D*/ T, = 31<2D;{1:1.3 + AD;ﬂ:L2
where
K’
A== —(k3+ x})
K
fromequation (3.1)
Y r\2 '
® _ K A o 2xy) KK
Dy Ty T [ _2J +— D;vtl,z K02 Tst T3 (3.2)
K, K K, K,
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Dt ;

if we find the derivative of the given equation

2) — !
D..’ T3 = —Kf,—KD

and using D,t,; =—K 7, We have

1):1665-1670, 2012

KT, T KT,

!
T2 T KTt K1D7T2,3

o)) _ ! ’
Dy T3 = 7K, T K Dnyt 12 TKT; — K12171.3 (3.3)
By using the equations (3.2) and (3.3) we have
a 2(x,)’ KoK
2 2 2 1
-7, KZD"‘/TI,Z +K Ty — K12‘51,3 - t— DVTI,Z — 15T, — Tst T3
Ky 2 Ky Ky
If we product the both sides of the equation with D, KT,
KK = _
1,53 we have the x| =—2L and then «|x,— «,k, =0 and Dy s T2 ¥ KTy + KiTos
© D‘/TM = KL HKT,
. K, . K T D = —KT;+K
since —L is constant then we have —-=—2 =constant. v s ¥ g
K, Ky Ty3 Dgz,, KT, T KTy T KTy
D«yt 34 - T KTy
Theorem 7 If y is a helix of order 3 on K-manifold,
then So, the matrix form is
® 2, 2 - - S I
Dyt , + (g + kDT, =0 D, , 0 x, O 0 0 0 | 7,
D, -«, 0 ¥, K 0 0|7,
Proof: Since x;, K, are constants and for d = 3. D1, 0 —x, 0 0 K 0|t
_ _ _ Dt,| |0 -x 0 0 x O0]c
Dt , =675 Dty =-wT,+K7; Din,=-K7, P ! 3 23
D,t,, 0 0 - -5 0 x,| Ty
then we obtain ID,u,] [0 0 0 0 -x, 0Ty,
Dz, , KTz and
@ _
Di't, = wDit; T, Ty, 0
) ; ) ,
= TR TR, KyTau KTy + KT,
® _ 2 3 ' ,
D1, = G067 )+KK(-KT ;) KTy 5 KT, + KTy,

2 2
(Gt x 1)D«',1'1,2
where
3) 2 2 —
D.., T, +(5 +K I)D../rl_2 =0

Corollary 2: If y is a holomorphic helix «j,
separately constants then «|=0,k,=0 From there we

find
fo)‘cl,z +(g + 1(21)D..,‘51,2 =0
Holomorphic helices of order 4: From
DV ($)=—K; Vi (5)+ KV, (5)

j=12,..d and t;=(V,JV,) also for curve of order
4(1=1,23j=1,23,4)then we have
1668

Theorem & Let M is 2dimensional K-manifold. For
all H-helix of order 4 of complex torsions is given
curvatures

K1, k3 and «3, satisfy following equations

_ _ _ __ KT _ _
TUaTTs =T T = Tha™ s T3=T,=0
K+ K,
where
K+ K
TE
2 2
JKZ-!—(KI +K;)
=_ = =g =_1%T 0
T2 T34a™ T Ty Tia > T3 T Toy
K= K3

when «,# «; [1].
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KK,

Tt
\/K§+ (k, =1,

=1,,=0,1,,=-1,,= %1

or
LR WU

here k| = K3

Theorem 9 Let y be a general helix on K-manifold M
of order 4, so,

€] @) -
D1, , +AD )t , +uD,1,, =0

where
LY
K
and
3, K
- 2 2 2, 2 2
=——2 24 K+ K- K3
K, K,
Proof
D"jrl,Z =K%
D (2) A 2
T2 TR 3T KT o T GKGT , + GK T,
and

3) — ’ ” 3 2
Dt ,=3k'D.1 5 + (K] —K; - 1515 - KiK,)T

+2K15K T, ,

KT, =Ky, .4, using this relation, w«r7,,=K7, is

obtained and in the above expression
KKK T, = 26K,
is written,

3) _ ' ” 3 2 2 2
Dyt , =3k,D 15 + (K — K — 16K — KK, T3+ 2K, 4

’ " 3 2
:3K2D~'(T1,3(K2 KK Ki_ Kle)Tl,s

is obtained and for

D:,Tl,z K03 = T, =—Dy-'rly2
K,
1
D b DY
=1, 3T T —D; T,
2 2
we find
3k! 3k, «!
3 2 2 2 2
DYt , =—2D%1, + —i+—2—K+K—K D.t
Y B Y e 3 2 3 1 vy “1,2
K, K K,
or

©] (2) —
D'ty , +ADPt, +uD,t , =0

Where
- _3K'2
K,
and
3 K, 2 Kl
o LB

) K

2

Theorem 10: Ify a helix on K-manifold of order 4

3) 2 2 2 _
D1, +{Kl + K5 —K3}D;/‘Cl’2 =0

Proof:
D~'f‘:1.2 = KT,
D%t = —KT, + KT, + KK T
7 Yo = KT, T4 T KK T,
16) . 2 2 2
Di't, = KD, - kKT ;- KKT;;+ 2K,K,K3T, 4

KT,y =K., T 4, using the equation, x7,,=1x,1,, is

obtained and from the above

2
2K 16KT,, = 2K,K5T
and

1
D;r,, KT 3= T3 = K_Dvrl,z

2
using equations,

2
K,K 1
271 2
T, D;t,,+ 2x,k; —D.1, ,

2 2

2
K,K

(3), — _ a3 _

D7 T, = Ksz“tm " Dr,,

2 2 2
= (=K, +K; — K] )Dy'Tl,z
is obtained

fo)‘tlvz + {Kf 15— K23} D,7,=0

Corollary 3 If y is a helix,because of «;, «; will be
constants separately, k| =0, «, =0. Then we obtain

3) 2 2 2 _
D)1, +{Kl + K, —K}}D;/'L:L2 =0
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