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INTRODUCTION

BCK and BCI-algebras, two classes of algebras of 
logic, were introduced by Imai and Iseki [1], Iseki [2] 
and Iseki and Tanaka [3] and have been extensively 
studied by various other researchers [4, 5]. It is known 
that the class of BCK-algebras is a proper subclass of 
the class of BCI-algebras. In [6, 7] a wider class of 
abstract algebras was introduced by Q.P.Hu and
X.Li.They have shown that the class of BCI-algebras is 
a  proper  subclass  of  the  class  of  BCH-algebras.
BCH-algebras have also been studied by Chaudhry and 
some other researchers [8-10].

The notion of d-algebras, another generalization of 
the notion of BCK-algebras, was introduced by Neggers 
and Kim [11]. They studied some properties of this 
class of algebras. Since then many researchers have 
extensively studied these algebras [12-16].

The study of multipliers have been made by
various  researchers  in  the  context  of  C*-algebras,
rings and semigroups [17]. They have studied the
properties of multipliers on them as well as properties 
of these algebraic structures using the notion of a
multiplier  on  them. But the properties of multipliers 
o n  d-algebras, an  important  class  of  algebras 
containing the class of BCK-algebras, have not been 
investigated so far. So with this motivation, in this 
paper  we  introduce  the  concept  of  a  multiplier  on
a d-algebra and obtain  some  properties  of  multipliers 
of d-algebras.

PRELIMINARIES

In this section we describe some definitions and 
notions that will be used in the sequel.

Definition 2.1: [8] Let X be a set with binary operation 
* and a constant 0. Then (X, *, 0) is called a BCK-
algebra if it satisfies the following axioms:

(1) 0=)())()(( yzzxyx ∗∗∗∗∗

(2) 0=))(( yyxx ∗∗∗

(3) 0=xx∗

(4) 0=0 x∗
(5) 0=0= xyandyx ∗∗  imply x = y for all x,y,z∈X

Definition 2.2: [10] A d-algebra is a non-empty set X 
with a constant 0 and a binary operation * satisfying the 
following axioms:

(1) 0=xx∗
(2) 0=0 x∗

(3) 0=0= xyandyx ∗∗  imply x = y for all x,y∈X

Remark 2.3: It is obvious from above definitions that 
every BCK-algebra is a d-algebra. The following shows 
that converse is not true, in general.

Example 2.4: [10] Let X = {0,1,2,3,4,5} with the
binary operation * defined by:

* 0 1 2 3 4 5
0 0 0 0 0 0 0
1 1 0 0 0 0 0
2 2 2 0 0 0 0
3 3 3 1 0 0 0
4 4 2 1 1 0 0
5 5 5 3 3 1 0
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 Then X is a d-algebra, but it is not BCK-algebra.
This is because condition(2) of Definition(2.1) is not 
satisfied as shown: 

01=23=23)(5=22))(5(5 ≠∗∗∗∗∗∗

This example shows that the class of BCK-algebras
is a proper subclass of the class of d-algebras.

Definition 2.5: Let S be a non-empty subset of a d-
algebra X, then S is called a subalgebra of X if x*y∈S
for all x,y∈S.

Definition 2.6: Let X be a d-algebra and I a subset of 
X, then I is called an ideal of X if it satisfies the
following conditions:

(1) I∈0

(2) IyandIyx ∈∈∗  imply x∈I

Definition 2.7: Let X be a d-algebra and I a nonempty 
subset of X, then I is called a d-ideal of X if it satisfies 
the following conditions:

(1) IyandIyx ∈∈∗  imply x∈I and
(2) XyandIx ∈∈  imply x*y∈I.

From condition (2) it is obvious that for
IxxXIx ∈∗⊆∈ =0, .

MULTIPLIERS ON d-ALGEBRAS

In the sequel X will denote a d-algebra with 
constant 0 and binary operation *, unless otherwise 
specified. We now prove our results.

Definition 3.1: A self map ƒ:X→X satisfying
yxfyxf ∗∗ )(=)( , for  all  x,y∈X, is called a mu ltiplier

on X.

Example 3.2: Let X = {0,a,b} with the binary operation 
* defined by

* 0 a b
0 0 0 0
a a 0 0
b b a 0

Then X is a d-algebra. Let ƒ:X→X be defined by





.=
,0,=0

=)(
bxifa

axif
xf

Then ƒ is a multiplier on X.

Remark 3.3: If X is a d-algebra with binary operation 
*, then we define a binary relation ≤ on X by: 

.,0,= Xyxyxifonlyandifyx ∈∗≤

Proposition 3.4: Let X be a d-algebra and ƒ a
multiplier on X, then

(1) 0=(0)f ,
(2) xxf ≤)(  for all x∈X and
(3) if x≤y then yxf ≤)(  for all x,y∈X.

Proof:

(1) 0=(0)(0)=(0))(0=(0) fffff ∗∗ .
(2) Let x∈X. Then xxfxxff ∗∗ )(=)(=(0)=0 . So

xxf ≤)( .
(3) Let yxandXyx ≤∈, . Then x*y = 0. So,

yxfyxff ∗∗ )(=)(=(0)=0 . Thus yxf ≤)( .

Proposition 3.5: Let ƒ and g be multipliers on X, then 
their composition ƒ°g is a multiplier on X.

Proof: Let x,y∈X. Then 

yxgfyxgfyxgf ∗∗∗ ))((=))((=))(( 
yxgfyxgf ∗∗ ))((=))((= 

So ƒ°g is a multiplier on X.

Definition 3.6: A  d-algebra X is said to be positive 
implicative if 

)()(=)( zyzxzyx ∗∗∗∗∗

for all x,y,z∈X.
Let M(X) denotes the collection of all multipliers

on X. Obviously O:X→X defined by O(x) = 0 for all 
x∈X and I: X→X defined by I(x) = x for all x∈X are in 
M(X). So M(X) is non-empty.

Definition 3.7: Let X be a positive implicative d-
algebra and M(X) be the collection of all multipliers on 
X. We define a binary operation * on M(X) by: 

).(,)()(=))(( XMgfandXxforxgxfxgf ∈∈∗∗

Theorem 3.8: Let X be a positive implicative d-
algebra. Then (M(X),*,0) is a positive implicative d-
algebra.
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Proof: Let X be implicative d-algebra. Let g,ƒ∈M(X).
Then

))(())((=))(( yxfyxgyxfg ∗∗∗∗∗
))(())((= yxfyxg ∗∗∗

.)))(((=))()((= yxfgyxfxg ∗∗∗∗

So g*ƒ∈M(X). Let ƒ∈M(X). Then 

)(=0=)(0=)()(=))(( xOxfxfxOxfO ∗∗∗

for all x∈X. So O*ƒ = O for all ƒ∈M(X).
Now for ƒ∈M(X), we have 

)(=0=)()(=))(( xOxfxfxff ∗∗

for all x∈X. So ƒ*ƒ = O.
Let g,ƒ∈M(X) be such that 

OfgandOgf == ∗∗

This implies 

0=))((0=))(( xfgandxgf ∗∗

for all x∈X. That is, 

0=)()(0=)()( xfxgandxgxf ∗∗

which implies ƒ(x) = g(x) for all x∈X. Thus ƒ = g. 
Hence M(X) is a d-algebra.

Now we show that it is a positive implicative. Let 
ƒ, g and h∈M(X). Then 

(( ) )( ) = (( )( )) ( ) = ( ( ) ( )) ( ) =f g h x f g x h x f x g x h x∗ ∗ ∗ ∗ ∗ ∗
( ) = ( ( ) ( )) ( ( ) ( ) ) =f x h x g x h x∗ ∗ ∗

                       = (( )( )) (( )( ))=(f h x g h x∗ ∗ ∗
))=(( ) ( ))( ) for allf h g h x∗ ∗ ∗ ∈

for all x∈X
Hence

)()(=)( hfgfhgf ∗∗∗∗∗

Thus M(X) is an implicative d-algebra.

Proposition 3.9: Let X be a d-algebra and ƒ a
multiplier on X. If ƒ is one-to-one, then ƒ is the identity 
map on X.

Proof: Let ƒ be one-to-one. Let x∈X. Then 

(0)=0=)()(=))(( fxfxfxfxf ∗∗

Thus 0=)(xfx ∗ , which implies )(xfx ≤ . Since
xxf ≤)( , by proposition  3.4 (2),  for  all  x, therefore 

ƒ(x) = x. Hence ƒ is the identity map.
Let ƒ be a multiplier on X. We define Ker(ƒ) by: 

0}.=)(:{=)( xfandXxxfKer ∈

Proposition 3.10: Let X be a d-algebra and ƒ a
multiplier on X. Then

(1) Ker(ƒ) is a subalgebra of X and
(2) If ƒ is one-to-one, then Ker(ƒ) = {0}.

Proof:
(1) Let x,y∈Ker(ƒ). Then ƒ(x) = 0 and ƒ(y) = 0. So 

0=0=)(=)( yyxfyxf ∗∗∗ . Thus x*y∈Ker(ƒ),
which implies Ker(ƒ) is a subalgebra of X.

(2) Let ƒ be one-to-one. Let x∈Ker(ƒ). So
(0)=0=)( fxf . Thus x = 0. So Ker(ƒ) = {0}. 

Definition 3.11: A d-algebra X is called commutative if 
)(=)( xyyyxx ∗∗∗∗  for all x,y∈X.

Proposition 3.12: Let X be a commutative d-algebra
satisfying Xxxx ∈,=0= . Let ƒ be a multiplier on X. If 
x∈Ker(ƒ) and y≤x, then y∈Ker(ƒ).

Proof: Let x∈Ker(ƒ) and y≤x. Then 0=)(xf  and
0=xy∗ . Now 

))((=))((=0)(=)( yxxfxyyfyfyf ∗∗∗∗∗
0=)(0=)()(= yxyxxf ∗∗∗∗

So x∈Ker(ƒ).

Theorem 3.13: Let X be a d-algebra satisfying x = 0 = 
x for all x∈X. Let ƒ be a multiplier on X, which is also 
an endomorphism on X. Then Ker(ƒ) is a d-ideal of X.

Proof: Obviously, 0∈Ker(ƒ). So Ker(ƒ) is nonempty. 
Let x*y∈Ker(ƒ) and y∈Ker(ƒ). Then ƒ(y) = 0. Also 

0=)( yxf ∗ , which implies 

)(=0)(=)()(=0 xfxfyfxf ∗∗

Thus x∈Ker(ƒ).
Let x∈Ker(ƒ) and y∈X. Then 

0=0=)(=)( yyxfyxf ∗∗∗

So x*y∈Ker(ƒ). Hence Ker(ƒ) is a d-ideal of X.
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Definition 3.14: Let X be a d-algebra and ƒ a multiplier on X. Then the set 

}=)(:{=)( xxfandXxxfFix ∈

is called the set of fixed points of ƒ.

Proposition 3.15: Let X be a d-algebra and ƒ a multiplier on X. Then Fix(ƒ) is a subalgebra of X.

Proof: Since ƒ(0) = 0, so Fix(ƒ) is non-empty. Let )(, fFixyx ∈ . Then yyfxxf =)(,=)( . Thus 

yxyxfyxf ∗∗∗ =)(=)(

So )( fFixyx ∈∗ . Hence Fix(ƒ) is a subalgebra of X.

Definition 3.16: Let X be a d-algebra and ƒ a multiplier on X. ƒ is called idempotent if ƒ°ƒ = ƒ. ƒ°ƒ will be denoted 
by ƒ2.

Theorem 3.17: Let X be a positive implicative d-algebra which satisfies x*0 = x for all x∈X. Let ƒ1,ƒ2 be two 
idempotent multipliers on X. If ƒ1°ƒ2 = ƒ2°ƒ1, then ƒ1*ƒ2 is an idempotent multiplier on X.

Proof: By Theorem 3.8, we get that ƒ1*ƒ2 is a multiplier on X. Now 

1 2 1 2 1 2 1 2 1 2 1 2(( * ) ( * ))( ) ( * )(( * )( )) ( * )( ( )* ( ))f f f f x f f f f x f f f x f x= = =
1 1 2 2 1 2 1 1 2( ( ( ) * ( )))*( ( ( )* ( ))) (( )( )* ( ) ) *f f x f x f f x f x f f x f x= 

2 1 2 1 2 1 2 2 1 2(( )( )* ( )) ( ( )* ( ))*(( )( )* ( )) ( ( ) * ( ))*f f x f x f x f x f f x f x f x f x= = 
1 2 2( ( ( )* ( )))f f x f x 1 2 1 1 2 1 2(( * )( ))*( (0)) (( * )( ))*0 ( * )( ).f f x f f f x f f x= = =

Thus (ƒ1*ƒ2)°(ƒ1*ƒ2) = ƒ1*ƒ2. Hence ƒ1*ƒ2 is idempotent.

CONCLUSION

We   have   initiated   a   study   of   multipliers  on 
d-algebras. We have shown that the collection M(X) of 
multipliers on a d-algebra X is a d-algebra. We have 
also investigated the conditions under which Ker(ƒ) of a 
multiplier ƒ∈M(X) is an ideal and the product ƒ1*ƒ2,
ƒ1,ƒ2∈M(X), is an idempotent multiplier on X.
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