World Applied Sciences Journal 18 (11): 1649-1653, 2012 ISSN 1818-4952 © IDOSI Publications, 2012 DOI: 10.5829/idosi.wasj.2012.18.11.1587

Multipliers in d-algebras

Muhammad Anwar Chaudhry and Faisal Ali

Centre for Advanced Studies in Pure and Applied Mathematics, Bahauddin Zakariya University Multan, Pakistan

Abstract: In this paper, we introduce the concept of a multiplier on a d-algebra and obtain some properties of multipliers of d-algebras.

2010 mathematics subject classification: 06F35.03G25.08A30

Key words: d-algebras . multiplier . commutative . positive implicative

INTRODUCTION

BCK and BCI-algebras, two classes of algebras of logic, were introduced by Imai and Iseki [1], Iseki [2] and Iseki and Tanaka [3] and have been extensively studied by various other researchers [4, 5]. It is known that the class of BCK-algebras is a proper subclass of the class of BCI-algebras. In [6, 7] a wider class of abstract algebras was introduced by Q.P.Hu and X.Li.They have shown that the class of BCI-algebras is a proper subclass of the class of the class of the class of the class of BCI-algebras. BCI-algebras is a proper subclass of the class of BCI-algebras is a proper subclass of the class of BCI-algebras. BCI-algebras have also been studied by Chaudhry and some other researchers [8-10].

The notion of d-algebras, another generalization of the notion of BCK-algebras, was introduced by Neggers and Kim [11]. They studied some properties of this class of algebras. Since then many researchers have extensively studied these algebras [12-16].

The study of multipliers have been made by various researchers in the context of C^* -algebras, rings and semigroups [17]. They have studied the properties of multipliers on them as well as properties of these algebraic structures using the notion of a multiplier on them. But the properties of multipliers on dalgebras, an important class of algebras containing the class of BCK-algebras, have not been investigated so far. So with this motivation, in this paper we introduce the concept of a multiplier on a d-algebra and obtain some properties of multipliers of d-algebras.

PRELIMINARIES

In this section we describe some definitions and notions that will be used in the sequel.

Definition 2.1: [8] Let X be a set with binary operation * and a constant 0. Then (X, *, 0) is called a BCK-algebra if it satisfies the following axioms:

- (1) ((x*y)*(x*z))*(z*y)=0
- (2) (x * (x * y)) * y = 0
- (3) x * x = 0
- (4) 0 * x = 0
- (5) x * y = 0 and y * x = 0 imply x = y for all $x, y, z \in X$

Definition 2.2: [10] A d-algebra is a non-empty set X with a constant 0 and a binary operation * satisfying the following axioms:

- (1) x * x = 0
- (2) 0 * x = 0
- (3) x * y = 0 and y * x = 0 imply x = y for all $x, y \in X$

Remark 2.3: It is obvious from above definitions that every BCK-algebra is a d-algebra. The following shows that converse is not true, in general.

Example 2.4: [10] Let $X = \{0,1,2,3,4,5\}$ with the binary operation * defined by:

*	0	1	2	3	4	5
0	0	0	0	0	0	0
1	1	0	0	0	0	0
2	2	2	0	0	0	0
3	3	3	1	0	0	0
4	4	2	1	1	0	0
5	5	5	3	3	1	0

Corresponding Author: Muhammad Anwar Chaudhry, Centre for Advanced Studies in Pure and Applied Mathematics, Bahauddin Zakariya University Multan, Pakistan Then X is a d-algebra, but it is not BCK-algebra. This is because condition(2) of Definition(2.1) is not satisfied as shown:

$$(5*(5*2))*2 = (5*3)*2 = 3*2 = 1 \neq 0$$

This example shows that the class of BCK-algebras is a proper subclass of the class of d-algebras.

Definition 2.5: Let S be a non-empty subset of a dalgebra X, then S is called a subalgebra of X if $x^*y \in S$ for all $x,y \in S$.

Definition 2.6: Let X be a d-algebra and I a subset of X, then I is called an ideal of X if it satisfies the following conditions:

(1) $0 \in I$ (2) $x * y \in I$ and $y \in I$ imply $x \in I$

Definition 2.7: Let X be a d-algebra and I a nonempty subset of X, then I is called a d-ideal of X if it satisfies the following conditions:

(1) $x * y \in I$ and $y \in I$ imply $x \in I$ and (2) $x \in I$ and $y \in X$ imply $x * y \in I$.

From condition (2) it is obvious that for $x \in I \subseteq X, 0 = x * x \in I$

MULTIPLIERS ON d-ALGEBRAS

In the sequel X will denote a d-algebra with constant 0 and binary operation *, unless otherwise specified. We now prove our results.

Definition 3.1: A self map $f:X \rightarrow X$ satisfying f(x*y) = f(x)*y, for all $x,y \in X$, is called a multiplier on X.

Example 3.2: Let $X = \{0,a,b\}$ with the binary operation * defined by

*	0	a	b
0	0	0	0
a	a	0	0
b	b	a	0

Then X is a d-algebra. Let $f: X \rightarrow X$ be defined by

$$f(x) = \begin{cases} 0 & \text{if } x = 0, a \\ a & \text{if } x = b. \end{cases}$$

Then *f* is a multiplier on X.

Remark 3.3: If X is a d-algebra with binary operation *, then we define a binary relation \leq on X by:

$$x \le y$$
 if and only if $x * y = 0, x, y \in X$.

Proposition 3.4: Let X be a d-algebra and f a multiplier on X, then

- (1) f(0)=0,
- (2) $f(x) \le x$ for all $x \in X$ and
- (3) if $x \le y$ then $f(x) \le y$ for all $x, y \in X$.

Proof:

- (1) f(0) = f(0 * f(0)) = f(0) * f(0) = 0.
- (2) Let $x \in X$. Then 0 = f(0) = f(x * x) = f(x) * x. So $f(x) \le x$
- (3) Let $x, y \in X$ and $x \leq y$. Then $x^*y = 0$. So, $0 = f(0) = f(x^*y) = f(x)^*y$ Thus $f(x) \leq y$

Proposition 3.5: Let f and g be multipliers on X, then their composition $f^{\circ}g$ is a multiplier on X.

Proof: Let $x, y \in X$. Then

$$(f \circ g)(x * y) = f(g(x * y)) = f(g(x) * y) = f(g(x)) * y = (f \circ g)(x) * y$$

So $f^{\circ}g$ is a multiplier on X.

Definition 3.6: A d-algebra X is said to be positive implicative if

$$(x * y) * z = (x * z) * (y * z)$$

for all $x, y, z \in X$.

Let M(X) denotes the collection of all multipliers on X. Obviously O:X \rightarrow X defined by O(x) = 0 for all x \in X and I: X \rightarrow X defined by I(x) = x for all x \in X are in M(X). So M(X) is non-empty.

Definition 3.7: Let X be a positive implicative dalgebra and M(X) be the collection of all multipliers on X. We define a binary operation * on M(X) by:

$$(f * g)(x) = f(x) * g(x)$$
 for $x \in X$ and $f, g \in M(X)$.

Theorem 3.8: Let X be a positive implicative d-algebra. Then (M(X),*,0) is a positive implicative d-algebra.

Proof: Let X be implicative d-algebra. Let $g, f \in M(X)$. Then

$$(g * f)(x * y) = (g(x * y)) * (f(x * y))$$

= (g(x) * y) * (f(x) * y)
= (g(x) * f(x)) * y = ((g * f)(x)) * y.

So $g^*f \in M(X)$. Let $f \in M(X)$. Then

$$(O * f)(x) = O(x) * f(x) = 0 * f(x) = 0 = O(x)$$

for all $x \in X$. So $O^* f = O$ for all $f \in M(X)$. Now for $f \in M(X)$, we have

$$(f * f)(x) = f(x) * f(x) = 0 = O(x)$$

for all $x \in X$. So $f^*f = O$. Let $g, f \in M(X)$ be such that

$$f * g = O$$
 and $g * f = O$

This implies

$$(f * g)(x) = 0$$
 and $(g * f)(x) = 0$

for all $x \in X$. That is,

$$f(x) * g(x) = 0$$
 and $g(x) * f(x) = 0$

which implies f(x) = g(x) for all $x \in X$. Thus f = g. Hence M(X) is a d-algebra.

Now we show that it is a positive implicative. Let f, g and $h \in M(X)$. Then

$$\begin{aligned} ((f * g) * h)(x) &= ((f * g)(x)) * h(x) = (f(x) * g(x)) * h(x) = \\ &= (f(x) * h(x)) * (g(x) * h(x)) \\ &= ((f * h)(x)) * ((g * h)(x)) \\ &= ((f * h) * (g * h)(x)) \end{aligned}$$

for all x∈X Hence

$$(f * g) * h = (f * g) * (f * h)$$

Thus M(X) is an implicative d-algebra.

Proposition 3.9: Let X be a d-algebra and f a multiplier on X. If f is one-to-one, then f is the identity map on X.

Proof: Let *f* be one-to-one. Let $x \in X$. Then

$$f(x * f(x)) = f(x) * f(x) = 0 = f(0)$$

Thus x * f(x) = 0, which implies $x \le f(x)$. Since $f(x) \le x$, by proposition 3.4 (2), for all x, therefore f(x) = x. Hence f is the identity map.

Let f be a multiplier on X. We define Ker(f) by:

$$Ker(f) = \{x : x \in X \text{ and } f(x) = 0\}$$

Proposition 3.10: Let X be a d-algebra and f a multiplier on X. Then

- (1) Ker(f) is a subalgebra of X and
- (2) If f is one-to-one, then $\text{Ker}(f) = \{0\}$.

Proof:

- (1) Let $x,y \in \text{Ker}(f)$. Then f(x) = 0 and f(y) = 0. So f(x*y) = f(x)*y = 0*y = 0. Thus $x*y \in \text{Ker}(f)$, which implies Ker(f) is a subalgebra of X.
- (2) Let f be one-to-one. Let $x \in \text{Ker}(f)$. So f(x) = 0 = f(0). Thus x = 0. So $\text{Ker}(f) = \{0\}$.

Definition 3.11: A d-algebra X is called commutative if x*(x*y)=y*(y*x) for all $x,y \in X$.

Proposition 3.12: Let X be a commutative d-algebra satisfying $x = 0 = x, x \in X$. Let f be a multiplier on X. If $x \in \text{Ker}(f)$ and $y \le x$, then $y \in \text{Ker}(f)$.

Proof: Let $x \in \text{Ker}(f)$ and $y \le x$. Then f(x) = 0 and y * x = 0. Now

$$f(y) = f(y*0) = f(y*(y*x)) = f(x*(x*y))$$

= f(x)*(x*y) = 0*(x*y) = 0

So $x \in Ker(f)$.

Theorem 3.13: Let X be a d-algebra satisfying x = 0 = x for all $x \in X$. Let f be a multiplier on X, which is also an endomorphism on X. Then Ker(f) is a d-ideal of X.

Proof: Obviously, $0 \in \text{Ker}(f)$. So Ker(f) is nonempty. Let $x^*y \in \text{Ker}(f)$ and $y \in \text{Ker}(f)$. Then f(y) = 0. Also $f(x^*y) = 0$, which implies

$$0 = f(x) * f(y) = f(x) * 0 = f(x)$$

Thus $x \in \text{Ker}(f)$.

Let $x \in Ker(f)$ and $y \in X$. Then

f(x * y) = f(x) * y = 0 * y = 0

So $x^*y \in \text{Ker}(f)$. Hence Ker(f) is a d-ideal of X.

Definition 3.14: Let X be a d-algebra and f a multiplier on X. Then the set

$$Fix(f) = \{x : x \in X and f(x) = x\}$$

is called the set of fixed points of f.

Proposition 3.15: Let X be a d-algebra and f a multiplier on X. Then Fix(f) is a subalgebra of X.

Proof: Since f(0) = 0, so Fix(f) is non-empty. Let $x, y \in Fix(f)$. Then f(x) = x, f(y) = y. Thus

$$f(x * y) = f(x) * y = x * y$$

So $x * y \in Fix(f)$. Hence Fix(f) is a subalgebra of X.

Definition 3.16: Let X be a d-algebra and f a multiplier on X. f is called idempotent if $f^{\circ}f = f$. $f^{\circ}f$ will be denoted by f^2 .

Theorem 3.17: Let X be a positive implicative d-algebra which satisfies $x^*0 = x$ for all $x \in X$. Let f_1, f_2 be two idempotent multipliers on X. If $f_1^{\circ}f_2 = f_2^{\circ}f_1$, then $f_1^*f_2$ is an idempotent multiplier on X.

Proof: By Theorem 3.8, we get that $f_1 * f_2$ is a multiplier on X. Now

 $\begin{aligned} &((f_1 * f_2) \circ (f_1 * f_2))(x) = (f_1 * f_2)((f_1 * f_2)(x)) = (f_1 * f_2)(f_1(x) * f_2(x)) = \\ &(f_1(f_1(x) * f_2(x))) * (f_2(f_1(x) * f_2(x))) = ((f_1 \circ f_1)(x) * f_2(x)) * \\ &((f_2 \circ f_1)(x) * f_2(x)) = (f_1(x) * f_2(x)) * ((f_1 \circ f_2)(x) * f_2(x)) = (f_1(x) * f_2(x)) * \\ &(f_1(f_2(x) * f_2(x))) = ((f_1 * f_2)(x)) * ((f_1(0)) = ((f_1 * f_2)(x)) * 0 = (f_1 * f_2)(x). \end{aligned}$

Thus $(f_1 * f_2)^{\circ} (f_1 * f_2) = f_1 * f_2$. Hence $f_1 * f_2$ is idempotent.

CONCLUSION

We have initiated a study of multipliers on d-algebras. We have shown that the collection M(X) of multipliers on a d-algebra X is a d-algebra. We have also investigated the conditions under which Ker(f) of a multiplier $f \in M(X)$ is an ideal and the product f_1*f_2 , $f_1, f_2 \in M(X)$, is an idempotent multiplier on X.

ACKNOWLEDGMENT

The authors are thankful to Bahauddin Zakariya University, Multan, Pakistan for providing research facilities.

REFERENCES

- Imai, Y. and K. Iseki, 1966. On axiom systems of propositional calculi. XIV, Proc. Japan Acad. Ser A, Math. Sci., 42: 19-22.
- Iseki, K., 1966. An algebra related with a propositional calculi. Proc. Japan Acad. Ser A, Math. Sci., 42: 26-29.
- 3. Iseki, K. and S. Tanaka, 1978. An introduction to theory of BCK-algebras. Math. Japo., 23: 1-26.

- Nisar, F., R. Saeed and S.A. Bhatti, 2012. Fuzzy ideals in hyper BCI-algebras. World Applied Sciences Journal, 16 (12): 1771-1777.
- Borzooei, R.A., J. Shohani and M. Jafari, Extended BCK-module. World Applied Sciences Journal, 14 (12): 1843-1850.
- 6. Hu, Q.P. and X. Li, 1983. On BCH-algebras. Math. Seminar Notes, Kobe Univ., 11: 313-320.
- 7. Hu, Q.P. and X. Li, 1985. On proper BCHalgebras. Math. Japan, 30: 659-669.
- Chaudhry, M.A., 1991. On BCH-algebras. Math. Japan, 36 (4): 665-676.
- Chaudhry, M.A. and H. Fakhar-ud-din, 2003. Some categorical aspects of BCH-algebras, 27: 1739-1750.
- Dudek, W.A. and J. Thomys, 1990. On decomposition of BCH-algebras. Math. Japan, 35 (6): 1131-1138.
- 11. Neggers, J. and H.S. Kim, 1999. On dalgebras. Mathematica Slovaca, 49 (1): 19-26.
- 12. Toumi, M.A. and N. Toumi, 2009. Structure theorem for dalgebras. Acta Sci. Math. (Szeged), 75: 423-431.
- Allen, P.J., 2009. Construction of many d-algebras. Commun. Korean Math. Soc., 24: 361-366.

- Jun, Y.B., S.S. Ahn and K.J. Lee, 2011. Falling dideals in dalgebras. Discrete Dynamics in Nature and Society, Article ID 516418, 14 pages, doi:10.1155/2011/516418.
- Ahn, S.S. and G.H. Han, 2010. Rough fuzzy quick ideals in d-algebras. Commun. Korean. Math. Soc., 25 (4): 511-522.
- Ahn, S.S. and G.H. Han, 2011. Ideal theory of d-algebras based on N-structures. J. Appl. Math. and Informatics, 29 (5-6): 1489-1500.
- 17. Larsen, B., 1971. An introduction to the theory of multipliers. Berlin, Spring-Verlag.