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Abstract: In this paper, we study downward sets properties and their similarities to the convex sets in a 
topological vector space. Let G is a downward subset of ordered topological vector space X. we prove that 
if G be a open downward subset then it's downward hull set is open. We give a characterization for 
downward sets and get some results about it's closedness, compactness and it's convex hull sets.We show 
correspondences between concepts of monotonic analysis, like downward sets and their upper extreme 
points and similar concepts of convex analysis, that is, convex sets and their extreme points.
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INTRODUCTION

Because of their nature and applications, increasing 
functions have found an important role in optimization 
research and this research has led to a new branch of 
mathematics, namely, "Monotonic Analysis." Recent 
works [2-6, 15] show close relations between
monotonic analysis and convex analysis. Tuy [15] has 
shown some similarities between the concepts of
monotonic and convex analysis in Rn: downward vs. 
convex sets, increasing vs. convex functions, upper
extreme points of downward sets vs. extreme points of 
convex sets and so forth.

Downward sets and increasing functions in a
topological vector space and their similarities to the
convex sets and convex functions was studied by 
Mohebi [7]. He characterized  closed  downward  sets 
by  upper  boundary  and  upper  exterme  points. In 
section 3, he proved some topological properties of 
downward sets.

The  role  of  downward  sets for  characterization 
of best approximation and best simultaneous
approximation  and  separation  properties  can  be 
found in [l, 9].

In this paper, we use some of these concepts and 
also give some more new analysis property of
downward sets. To make an order on a topological
vector space, we use a closed convex pointed cone K, 
usually with intK≠0.

PRELIMINARIES

Let X  be  a  (Hausdorff)  topological  vector
space. We  assume  that  X  is  equipped  with  a  closed

convex  pointed  cone  K  in  X(the latter means that 
Kn (-K) = {O}).
We say x≤y or y≥x if and only if y-x∈K.

The topological vector space (X, τ) equipped with 
the partial order≤will be called an ordered topological 
vector space, sometimes represented by (X, τ, ≤). Let 
u∈intK. Using u we define the function pu as follows:

Pu(x):= inf{λ∈R: x≤λu} (x∈X)

Rubinov and Gasimov have investigated the
properties of this function in a more general case in 
[11]. For simplicity  we refer to pu as the p-function.
The following assertions can be easily verified:

(i) pu is finite,
(ii) x≤pu(x)u for all x∈X,
(iii) pu is sublinear,
(iv) pu is continuous,
(v) pu is topical, namely, pu is increasing (x≤y =

pu(x)≤pu(y)) and pu(x+λu) = pu(x)+λ for all x∈X
and all λ∈R.

Now, consider the function

                         ||x||:=max(pu(x),pu(-x)) (2.1)

It is well known [13] that ||.|| is a norm on X. We 
assume that the norm in (2.1) generates a topology on X 
that coincides with the original topology of X. In this 
case, X = (X, ||.||, ≤) is an ordered normed space. In 
many applications, these two topologies coincide. Here, 
we  give  a  simple  example  [10]. By nR + , we mean the
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cone   of   all   n-tuples   (x1,x2,...,in)   in   Rn  such  that 
xi ≥0,1≤i≤n.

Example   2.1:   Let   X  =  Rn,  u = 1:= (1,1,...,1)∈Rn,
K = nR+ . If x = (xi,x2,...,xn)∈Rn then p(x) = max1≤i ≤ nxi
and p(-x) = max i≤i≤n(-xi). In this case, ||x||= maxi≤i≤n|xi|
and the topology induced by the norm is the well-
known standard topology on X.
The following definitions can be found in [9, 12, 14].

Definition 2.2: let X be a ordered topological vector 
space.A set G⊂X is called a downward set if for any 
two points x, x'∈X, x'≤x and x∈G, then x'∈G.

The empty set and X are special downward sets in 
X. It is well known that the intersection and union of a 
family of downward sets are downward.

For every set G⊂X, the whole space X is a
downward set containing G and therefore the following 
concept is well defined.

Definition 2.3: The intersection of all downward sets 
containing G is called the downward hull of G and 
denoted by G*.

An  immediate  consequence  of  definition  2.3 is 
that the downward hull of any set G⊂X=(X,τ,≤) is 
downward. Clearly G* is the least (by inclusion)
downward set, which contain G.
The following proposition has been proved in [7, 14].

Proposition 2.4: The downward hull of a set G⊂X = 
(X,τ,≤) is the set G* = G-K = Uy∈G{x: x≤y},where G-
K:= {g-k: g∈G, k∈K}.

In the following, we give an example of downward hull 
of a set.

Example 2.5: Let X:= R2, K:= nR+  and 

G:= {(x, y)∈X:-1≤x≤1, 0≤y≤1)

Therefore, G is a closed and bounded (compact) 
subset of X. It is clear that G is not downward. In view 
of proposition 2.4 we conclude that the downward hull 
G of the set G* is the following set:

G* = {(x,y)∈X:x≤2,y≤1}

Proposition 2.6: [7] The downward hull G* of a
connected set G⊆X = (x,τ,≤) is connected.

Mohebi and Kermani [7] showed that every
downward set in ordered normed spaces is connected. 
They showed, also, G* is closed, whenever G is a 
compact subset and if G is an upper bounded subset of 
(X,τ,≤), then so is G*.

Throughout this paper, we assume that the
topology induced by ||.|| in (2.1) coincides with the
original topology of X. By (X,τ,≤)we mean the ordered 
topological vector space X, which is equipped with a 
closed solid pointed convex cone K, While (X, ||.||, ≤)
represents the ordered normed space X, which enjoys 
the norm in (2.1).

TOPOLOGICAL PROPERTIES 
OF DOWNWARD SETS

Now, we are ready to state and prove our main 
results.

Lemma 3.1: If G be an open subset of X = (X,τ,≤),
then so is G*.

Proof: According to proposition 2.4 we have G* = G-K
= ∪{G-k:k∈K}. For each k∈K, G-k is open. Then 
∪{G-k: k∈K] is open and therefore G* is open.

Lemma   3.2:   If   G  be  a  weakly  compact  subset  of 
X = (X,τ,≤), then G* is closed.

Proof: Let {xn} be a sequence in G* and xn→x (in 
norm). By proposition 2.4, there are sequences of {gn}
in G and {kn} in K such that xn = gn-kn→x (in norm). 
Since G is weakly compact, so there is subsequence
{gnk} such that it is weakly convergence to an element 
of G as g.Hence for each f∈X*, dual space of X, we 
have:

f(gn-kn) = f(gn)-f (kn)→f(x)
Also

f(gnk)→f(g)
Therefore

f (kn)→f (g)-f (x)=f (g-x)
Hence

kn→g-x (weakly)

But, K is convex and closed so K = clA = wk-clK.
Therefore g-x∈K and x = g-(g-x). That is x∈G*.

Lemma 3.3: Let G be a subset of X = (x,τ,≤). Then G 
is convex if and only if G* is convex.

Proof:  Let  G  is  convex.  Then,  by  proposition  2.4, 
G* = G-K is convex.

Conversely, Let G* is convex and g1, g2∈G, 0≤λ≤1.
Thus for k0∈k, g1-ko and g2-ko∈G*. Hence

λ(g1-ko)+(1-λ)(g2-ko) = λg1+(1-λ)g2-k0∈G*
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Therefore

λg1+(1-λ)g2 = [λg1+(1-λ) g2-ko]+ko∈G

Lemma 3.4: Let G be a subset of X = (X,τ,≤) and G, is 
compact, then G is compact.

Proof: Let {gn}⊆G and k0∈K Then, by proposition 2.4, 
{gn-ko}⊆G*. Hence there is a subsequence as {gnk-k0}
which is convergence to g in G*. Therefore {gnk} is 
convergence to g+k0∈G.

Lemma 3.5: let W is a downward set of X = (X,τ,≤).
Then co(W), convex hull W, is downward.

Proof: Let x∈co(W), y∈X and y≤x. By the definition 
of convex hull, there are some 0≤αi≤1 and xi∈W,i = 1, 
…, n such that 

Therefore

Let αj≠0, then we have

Now, because xj∈W and W is downward set, it 
follow that

and hence by definition of convex hull we have

Therefore there exists yi, … ym∈W and 0≤ßd≤1,
d=1,…m such that

Therefore

That is y∈W and the proof is complete.
Recall that a component of X is, by definition, a 

maximal connected subset of X.

Lemma 3.6: Let W is downward set of X. Then the 
component of X which contains W is also downward 
set.

Proof: Let Cw be the component of X which is contains 
W and Cw* be downward hull of Cw. By proposition 2.6 
Cw is connected and contains W. Therefore Cw⊆C
w*⊆Cw. Hence Cw = Cw* and Cw is downward.

Definition 3.7: Let X is a topological vector space and 
K is a closed pointed convex cone in X such that intK 
≠0.
Let

0
yK = int(y+K) = y+intK for all y∈X.

We say that a point x∈X is an upper boundary
point of a set G⊆X if x∈G  while 0

yK ⊆X\G. The set of 
upper boundary points of G is called the upper
boundary of G and denoted by ∂+G.

Let D⊆ X. A point v∈D is called an upper extreme 
point of D if x∈D and x≥v imply x = v.

Obviously, ∂+G⊆G if G is closed. Also, every
upper extreme point of a downward set G satisfies 

0
yK ⊆X\G and therefore is an upper boundary point of 

G. In other words, the set V of all upper extreme points 
of G is a subset of ∂+G.

Now, we show correspondences between concepts 
of monotonic analysis, like downward sets and their 
upper extreme points and similar concepts of convex
analysis, that is, convex sets and their extreme points.

Proposition 3.8: Let G be a non-trivial downward set 
of X, a∈G,K closed pointed convex cone in X and V is 
the set of upper extreme point of G. Then the following 
statements are equivalent.

(i) a∈V.
(ii) If x, k∈X and x = a+k, then either x∉G, or k∉intK,

or k = 0.
(iii) If W = {x1, …,xn}⊆G and a∈W*, then a =xkfor

some k.
(iv) For each k∈intK,G\{a+K} is downward.

Proof: (1)→(2):

Let k ∈ intK. Then by definition of a, a+k∈
a+intK⊂X\G.
Therefore x = a+k∉G.

Let  x = a+k  and  x∈G. Then  k∉intK. Otherwise, 
x=a+k∈ 0Kα ⊂X\G. Hence x∉G, which is contradiction. 
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(In fact K = 0. Because a≤x = a+k∈G. But, a is extreme 
point so a = a+k. Therefore

k = 0

(2)→(3):
By  proposition  2.4,  there  exist xk∈W, k∈K such 

that a = xk-k.

Then k = 0.

(3)→(1):
Let x∈G, a≤x. Then a∈{x}*. Therefore a = x. 

(1)→(4):
Let a∈V, then from definition of a it follow that 

a+k∉G. Therefore G\{a+k} = G is downward.

(4)→(1):
Let G\{a+k} = G is downward set, x∈G and a≤x.

Then a+k≤x+k ; and x+k∉G\{a+k}.Otherwise, since
G\{a+k} is downward it follow that a+k∈G\{a+k}
which is contradiction. But, x+k∈G. Because if x+k∉G
then x+k∉∂+G. Since x∈G, then x∈G .

Therefore x+k∉ 0
xK = x+intK which is

contradiction. Therefore x+k = a+k. That is x = a.

Lemma 3.9: Let G be a downwad set of X = (X,τ,≤).
Then clG, the closure of G, is downward set.

Proof: Let x, x'∈X, x'≤x and x∈clG. If x∈G then x'∈G
and so x'∈clG. Let x∈clG\G. Then there exist a
sequence   {xn}⊆G   such   that  xn→x  (in  norm),  so 
xn-x'→x-x'. There  exist  k∈K,  since  intk≠ø  such  that 
x-x'-k∈intK and xn-x'-k→x-x'-k (in norm). Therefore
xn-x'-k∈intK, for some n∈N. This follow that
x'≤x'+k≤xn. That is x'∈clG.

DOWNWARD SETS AND 
SEPARATION PROPERTIES

Let X = (X,τ,≤) be lattice Banach space which is 
equipped with a closed convex pointed K in X. For any 
subset A of X We shall use the notation A+= {a+: a∈A},
where a+= sup(a, 0). We also use notation a-=-inf(a, 0).

A subset Z⊆X is called upward if for each w∈Z
and x∈X, the inequality x≥w implies x∈Z.
The following lemma is clear.

Lemma 4.1: let G be a subset of X= (X,τ,≤).

(1) G is a downward set if and only if-G = {x∈X:-
x∈G) is a upward set.

(2) G is a downward set if and only if G', complement 
of G, is a upward set.

Proof: It is obvious.
A linear functional f on X is called positive if

f(x)≥0 holds for each x∈K. If f be a positive linear 
functional on X then, it is easy to see that, for each 
α∈R, A = {x: f(x)≥α} is an upward set of X. We recall 
that, a subset A of X is called a closed half-space if 
there is a continuous linear functional f: X→R such that 
A = {x: f(x)≥α} for some α∈R. Therefore if f be a 
positive linear functional then the closed half-space,
depend it, is upward. In other word, any positive closed 
half-space is upward.
Now, we have a conversely case:

Proposition  4.2:  Let  W  be  a  upward  set  of  X. 
Then   there   exists  a  positive  linear  functional  f
such that W⊆{x∈X: f(x)≥α} for some α. (In other
word,  any  upward  set  is  a  subset  of  a  positive 
closed half-space.

Proof: Suppose that W is a upward set of X and 
v∉CO (W). We can suppose v≤0 (Indeed, if v∉W,
then-v-∉W. Otherwise,if-v-∈W then from v = v+-v-we
have-v-= v-v+∈ W and from

v = v+-v-= v++(v-v+)≥v-v+

result that v∈W, which is a contradiction.).Now, by 
Hahn-Banach theorem there exists a continuous linear 
functional g: X→R and a real scalar α such that:

g(v) <α≤g(W) for all w∈CO (W)

If x∈K, then w+x≥w for all w∈W. Since W is 
upward so x+w∈W. Since w+x∈ W⊆ CO (W) therefore 
from g(v) <α≤g(w+x), result that g (w-v+x)≥0. For
fixed w∈W we define,

f(x) = g(w++x)-g(v) = g(w+-v+x)

Hence if x≥0 then w+-v+x∈W and therefore f(x) = 
g(w+-v+x)≥0 with f(x)≥α. That is, f is positive linear
functional and W⊆{x∈X: f(x)≥α}.

Thus the consequences of Hahn-Banach Theorem 
are applicable to upward sets. For example, we have the 
following proposition:

Proposition 4.3: Let W be a upward subset of X then 
CO W is the intersection of the closed positive half-
spaces containing W.
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Proof: Let H = {A: W⊆A = {x∈X: f(x)≥α}} be the 
collection of all closed positive half-spaces containing 
W.By proposition 4.2 H≠ø. Since each set in H is 
closed and convex, CO W⊆n{A: A∈H}. On the other 
hand, if X0 ∉CO W, then by Hhan-Banach theorem
there is a continuous linear functional f: X R and α in R 
such  that  f(x)≥α  and  f(xo) <α for all x in CO W. Thus 
A = {x: f(x)≥α] belong to H and X0∈A. That is 
X0∉nAy∈HA.

Corollary 4.4: Let W be a upward subset of X then 
CO W is upward.

Proof: Since each closed positive half-spaces is upward 
and the intersections of upward sets are upward, the 
state following from the preceding proposition.

CONCLUSIONS

In this paper, we proved some topological
properties  and  separation  properties  of  downward 
sets. Also, we characterized upward sets by continuous 
positive linear functional.

However, convexity is sometimes a very restrictive 
assumption, so there is a clear need to study monotonic 
analysis concepts (such as: Best approximation,
increasing and positively homogeneous functions (IPH, 
DPH), NTU games in economics, analysis of topical 
functions, ICAR (increasing convex-along rays)
functions, optimization) by not necessarily convex sets. 
Downward sets and upward sets are a tool in the study 
of the monotonic analysis.
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