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Abstract: In this paper, we considered an inverse problem with two given spectrum for a boundary value
problem with aftereffect and eigenvalue in the boundary condition and we showed that transformation
operator was generalized degeneracy and we obtained a new proof of the Hochstadt’s theorem concerning

the structure of the difference q(x)- q(x).
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INTRODUCTION

We consider boundary value problem with
aftereffect on a finite interval and with eigenvalue in
the boundary condition:

-¥(x)

+ ( ) +J M(X—t)y()
2y(x), 0<x

I/\

with the boundary condition
y(0.1)= 1y(0,1)=0
y @2 +Hy(t.2)=0

Here A is spectral parameter, q(x)<€l,(0,m) and
H are real parameter. The presence of an aftereffect
in a mathematical model produces qualitative changes
in the study of the inverse problem. In recent years,
inverse spectral problems for integro differential
operators have been studied by many authors
including [1-4].

The generalized degeneracy of transformation
operator for Sturm-Liouville and singular Sturm-
Liouville operator was showed in [5-7].

In this paper, using Levitan's method, it was shown
that kernel K(x,t) of the integral equation is generalized
degeneracy.

Now let us consider two boundary value problem
with aftereffect on a finite interval and with eigenvalue
in the boundary condition:

( +J M(X—t)y( )dt

(1.1)

( )0 x<m
y(0) -1y (0)=0 (1.2)
y @,)) +Hy(m,A)=0 (1.3)

and

()R [Me-oya

=\ y( ) 0<x<m

y(0) =iy (0)=0

y @3 +Hy(mt,A)=0 (1.5)

where q(x)eL,(0,n) and H is real parameter.

Denote the spectrum of the first problem by {A;}n>1

and the spectrum of the second by {Xn} v Next, we

denote by @(x,1) the solution of (1.1) and by ¢(x,1) the

solution of (1.4), satisfying the initial condition (1.2).
The representation

O(x, 1) = @(x, 1)+ [ K(x,0)p(t,\)dt (1.6)
holds, where K(x,t) satisfies the equation

K, (x.t)-K, (x,t)+ (q(x)— (i(t))K(X,t)
+M(x —t) - M(x —t) 1.7)
+ (M(x-8) -M(x-&) )K€ )& =0
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and the conditions

K -
220 (3 - 400 (18)
X
K (x,0)=0 (1.9)
We put

¢, = [0 xidx, o=[¢ (xindx  (110)

1 - 1
P = — PN = = (1.11)

C An<i Cn

n

The function p(X) (p(r)) is called the spectral
function of problem (1.1)-(1.3) [(1,4), (1.5)]. Problem
(1.1)-(1.3) is regarded as an unperturbed problem, while
(1.4), (1.5) is considered as a perturbation of (1.1)-(1.3).

It is known fact that in [S] the knowledge of two
spectra for given Sturm-Liouville equation makes it
possible to recover its spectral function, i.e., to find the
numbers {c,}. More exactly, suppose that, in addition
to the spectrum of problem (1.1)-(1.3), we also know
the spectrum {u,} of the problem

1 H 1
A, =n+—+—+——
n nn  2nm?0

¢(x,A) =cosAx+sinix +%joxsin7»(xf ‘E)I:q(l')(p(‘t, A+ IOIM(I *S)(])(S,?n)ds}dl‘

Theorem 1. Consider the operator

Ly(x) E—y"(x) + q(x)y(x)+ JOXM(X - t)y(t)dt: kzy(x ), 0<x<m

subject to the boundary conditions

Let {A,} be the spectrum of L subject to (1.17) and (1.18).
If(1.18) is replaced by the new boundary condition

then a new operator and a new spectrum, say {y,}, result.
Now, consider the second operator

Ly(x)=-y (x)+a(x)y(x)+ [ Mx-0y(t)dt=2"y(x), 0<x<n

y(0)-2y(0)=0 (1.12)

y @.0)+Hy(nA)=0, H #H

Knowing {A,} and {p,}, we can calculate the
numbers {c,}. Similarly, for (1.4), if, in addition to

{Xn}, we also know the spectrum {ﬁn} determined by

the boundary conditions
y(0) =21y (0)=0

y @) +Hy @r)=0,H #H (1.13)

then it follows that we can determine the numbers {En}.

It is also shown that in [4]

Suppose that L has the spectrum {7:,1} with {7:,1} ={x,} for all n under the boundary conditions (1.17) and

a(0)di+22 {k, e 1, and n e N - o) (1.14)
(1.15)

(1.16)

¥(0) =y (0)=0 (1.17)
y .0 +Hy(m,1)=0 (1.18)
y @M +Hy @i)=0 (1.19)
(1.20)

(121)

y @, +Hy(t,A)=0
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L with the boundary conditions (1.17) and
y @0 +Hiy @A) =0 (1.22)

is assumed to have the spectrum {ﬂ“} Assuming that H, Hj=H, H and H #H are real numbers that are not

infinite.
Denote by A, the finite index set for which p, #p_ and by A the infinite index set for which p, = p . Under the
above assumptions, it follows that the kernel K(x,t) is degenerate in the extended sense:

K(x,0)= ¢, 0,(x)9,(1) (1.23)

where @, and @, are suitable solutions of (1.1) and (1.4).

Proof: It follows from (1.6) that
P ()= 02+ K00+ [} St At (1.24)
X
and

¢ (M) +Hp(x,0) = ¢ (5, 1) + Ho(x,2) + K(x,x)9(x, 1) + [ X(% + HKj(p(t,x)dt (1.25)
o\ ox

Substituing x=m and A =2, into the last equation and using the boundary conditions (1.18), we obtain

(f{l H)(p(n,x“) +K(m,m)o(m,1, )+ j(;ﬁ +f]Kj o(t,h,)dt=0 (1.26)
0 X X=T

As n—o and ¢(m,A,)—>(-1)"(cosl+sinl), the integral on the right-hand side tends to zero. Therefore, from
(1.26) we get
K(my=H-H (127)

j"[a_K+ﬁKj o(t, A, )dt=0,n = 0,1,... (1.28)
o\ ox x=1

Since the systems of functions ¢(t,A,) is complete, it follows from the last equation that

[a_1<+ HKJ ~0,0<t<n (1.29)
ox .

We now use the equation imposed on the second mentioned spectrum. Using (1.6) again, we obtain

(6,0 1 Hig(x, ) = (6, 0) +Fio(x, )+ K(X,x)(p(x,k)JrJ.X(Z—K+ﬁ1K]¢(t,k)dt (1.30)
0\ ox

Setting x=m and A=, (n€A) and using (1.19), we get

J-n[%+ﬁlKj o(t,n,)dt+ (ﬁl - Hl)(p(n,un) +K(n,m)e(n,p,) =0 (131
ol ox .

x=

In the last equation as n—o, the left-hand side tends to zero and ¢(m,p, ) —> (—1)"(cosl+sinl). Therefore;
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K(m % = H,-H, (1.32)
j“(a—K-l-ﬁ]K]
0 ox

Comparing (1.27) and (1.32), we obtain H-H = H, —H,. For neA,, relation (1.30) for (x =n and A =y, ) yields

o(t,n,)dt=0,ne A (1.33)

x=

I[‘Z—f + ﬁlK] o(t.p,)dt=0 (r.p,) +Hip(mp, ) (134)
It follows from (1.33) and (1.34) that
(6_K+ ﬁlK] = z(p(ﬂ,u“) +Hl(p2(n’““)(p(t,un),0S t<m (1.35)
ox x=n Ay "(P(t’ My )I

We derive from (1.29) and (1.35) the following equations:

K, t)=—0b @ m.p) +Hip(m.p,)

- o(t.p,) (136)
Hl _H AO "(p(t’ l’Ln)"2
[aK(X,t)) S H _ o(m,p) +Hl(p2(n’“")(P(t,Hn)sOS t<m (1.37)
x )., H-HE [oct, 1)

The function K(x,t) satisfies (1.7). Therefore, it follows from the initial conditions (1.36) and (1.37) that, in
triangle I (Fig. 1), we have

_ Q) +HIQULu )=, o
K(x,t) ﬁ_i% oo [¢(xm,) - HiCxn,) o (tm,) (138)

where E(x,k) and {(x,k) are the solutions of (1.4) satisfying the initial conditions
c(rA)=tmr=1,¢(mr)=1(rr)=0 (139)

i" The function K(x,t) and sum (1.38) satisfy (1.9);
therefore, they coincide in triangle II; consequently,
they coincide in triangle III, because solutions of (1.7)

satisfy the same initial conditions on the line X==s

etc., i.e., K(x,t) is expressed by (1.38) throughout the
triangle 0<x<t<m.

I

Theorem 2: If the spectra and {A,} and {Xn} coincide
I II and {u,} and {ﬂ“} differ in a finite number of their

e terms, i.e., p, =p, forneA, then

af4 w2 i

- - d,-

4(x)=q(x)= 2 cn—(9, 0, (1.40)
Fig. 1: % dx( )
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where @, and @, are suitable solutions of (1.1) and (1.4)

Proof: We obtain from (1.8) the equation

~ dK(x,x
a0 -a(x) =2 (141)
X
Differentiating (1.38) and setting t = x, we obtain
- L2 yo@an) Homy,) d (s 5
q(x)—q(x)==—= - . c(x,p,) —Hi(x,p,) |9 (x,1,) (1.42)
H, —H% ot w0 dx{[ } }
Consequently, 3. Buterin, S., 2007. On an inverse spectral problem
~ e~ d - for a convulation integro-differential operator.
a0 -q()= %c"&(q)“ '(p") (1.43) Result in Mathematics, 50: 173-181.
4. Dabbaghian, A.H., S. Akbarpoor and J. Vahidi,
where .
~ i -~ B 2011. The uniqueness theorem for boundary value
c(x,p) —Ht(x,p ) =¢,, o(x,1,) =9, (X,1,) problem with aftereffect and eigenvalue in the
and boundary condition. The journal of Mathematics

) 2[(5 (., _ﬁ@(n,“n)} and Computer Science, 2: 483-487.

Cn = (144) 5. Levitan, B.M., 1978. On the determination of the
Sturm-Liouville operator from one and two spectra.
Izv. Akad. Nauk SSSR, Ser. Mat., 42: 185-199.

This completes the proof of Theorem 2. We note 6. Panakhov, E.S. and R. Yilmazer, 2006. On inverse

2

(Hi-H)lo(t.p,)

that similar problem was investigated [7]. problem for singular Sturm-Liouville operator from
two spectra. Ukrainian Mathematical Journal,
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