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Abstract: In this paper, we considered an inverse problem with two given spectrum for a boundary value 
problem with aftereffect and eigenvalue in the boundary condition and we showed that transformation 
operator was generalized degeneracy and we obtained a new proof of the Hochstadt’s theorem concerning 
the structure of the difference q(x) q(x).−
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INTRODUCTION

We consider boundary value problem with
aftereffect on a finite interval and with eigenvalue in 
the boundary condition:

( ) ( ) ( ) ( )
( )

x''

0
2

y x q x y x M(x t)y t dt

= y x , 0 x

− + + −

λ ≤ ≤ π

∫

with the boundary condition

'y(0, ) y(0, ) = 0λ − λ λ

'y ( , ) Hy( , ) = 0π λ + π λ

Here λ is  spectral  parameter, q(x)∈L2(0,π) and 
H  are  real  parameter. The  presence  of  an  aftereffect 
in a mathematical model produces qualitative changes 
in the study of the inverse problem. In recent years, 
inverse spectral problems for integro differential
operators  have  been  studied  by  many  authors 
including [1-4].

The generalized degeneracy of transformation
operator for Sturm-Liouville and singular Sturm-
Liouville operator was showed in [5-7].

In this paper, using Levitan's method, it was shown
that kernel K(x,t) of the integral equation is generalized 
degeneracy.

Now let us consider two boundary value problem 
with aftereffect on a finite interval and with eigenvalue 
in the boundary condition:

( ) ( ) ( ) ( )
( )

x''

0
2

y x q x y x M(x t)y t dt

= y x ,0 x

− + + −

λ ≤ ≤ π

∫ (1.1)

'y(0) y ( 0 )=0− λ (1.2)

'y ( , ) Hy( , ) = 0π λ + π λ (1.3)
and

( )  ( ) ( )  ( )
( )

x''

0
2

y x q x y x M(x t)y t dt

= y x , 0 x

− + + −

λ ≤ ≤ π

∫ (1.4)

'y(0) y ( 0 )=0− λ

'y ( , ) Hy( , ) = 0π λ + π λ (1.5)

where ( ) ( )2q x L 0,∈ π  and H  is real parameter.
Denote the spectrum of the first problem by {λn}n≥1

and the spectrum of the second by { }n
n 1

.
≥

λ  Next, we 

denote by ϕ(x,λ) the solution of (1.1) and by  (x, )ϕ λ  the 
solution of (1.4), satisfying the initial condition (1.2).
The representation

 x

0
(x, ) = (x, ) K(x,t) (t, )dtϕ λ ϕ λ + ϕ λ∫ (1.6)

holds, where K(x,t) satisfies the equation

( ) ( ) ( )


( )

tt xx

x

t

K x,t K x,t q(x) q(t) K(x,t)

M(x t) M(x t)

M(x ) M(x ) K( ,t)d = 0

− + −

+ − − −

+ − ξ − − ξ ξ ξ∫
(1.7)
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and the conditions

dK(x,x)
2 =q(x) q(x)

dx
− (1.8)

K(x ,0 ) =0 (1.9)
We put

 22
n nn n0 0

c = (x, )dx, c = (x, )dx
π π
ϕ λ ϕ λ∫ ∫ (1.10)


<n < nnn

1 1
( ) = , ( ) =

c cλ λ
λ λ

ρ λ ρ λ
  (1.11)

The function ρ(λ) ( ( ))ρ λ  is called the spectral
function of problem (1.1)-(1.3) [(1,4), (1.5)]. Problem
(1.1)-(1.3) is regarded as an unperturbed problem, while 
(1.4), (1.5) is considered as a perturbation of (1.1)-(1.3).

It is known fact that in [5] the knowledge of two 
spectra for given Sturm-Liouville equation makes it 
possible to recover its spectral function, i.e., to find the 
numbers {cn}. More exactly, suppose that, in addition 
to the spectrum of problem (1.1)-(1.3), we also know 
the spectrum {µn} of the problem

( ) ( ) ( ) ( )
( )

x''

0
2

y x q x y x M(x t)y t dt

= y x , 0 x

− + + −

λ ≤ ≤ π

∫

'y(0) y ( 0 ) = 0− λ (1.12)

'
1 1y ( , ) H y ( , ) = 0 , H Hπ λ + π λ ≠

Knowing {λn} and {µn}, we can calculate the
numbers {cn}. Similarly, for (1.4), if, in addition to 
{ }n ,λ  we also know the spectrum { }nµ  determined by 

the boundary conditions

'y(0) y ( 0 )=0− λ

  '
1 1y ( , ) H y ( , ) = 0 , H Hπ λ + π λ ≠ (1.13)

then it follows that we can determine the numbers { }nc .

It is also shown that in [4]

( ) { } { }n
n n 20

1 H 1 k
= n q t dt , k l and n 0

n 2n n
π

λ + + + + ∈ ∈ −
π π π ∫  (1.14)

( ) ( ) ( ) ( ) ( ) ( )
x

0 0

1
x, =cos x sin x sin x q , M s s, ds d

τ ϕ λ λ + λ + λ − τ  τ ϕ τ λ + τ − ϕ λ τ λ ∫ ∫ (1.15)

Theorem 1. Consider the operator

( ) ( ) ( ) ( ) ( ) ( )
x'' 2

0
Ly x y x q x y x M(x t)y t d t = y x , 0 x≡ − + + − λ ≤ ≤ π∫ (1.16)

subject to the boundary conditions
'y(0) y ( 0 )=0− λ (1.17)

'y ( , ) Hy( , ) = 0π λ + π λ (1.18)

Let {λn} be the spectrum of L subject to (1.17) and (1.18). 
If (1.18 ) is replaced by the new boundary condition

'
1y ( , ) H y ( , ) = 0π λ + π λ (1.19)

then a new operator and a new spectrum, say {µn}, result.
Now, consider the second operator

 ( ) ( )  ( ) ( )  ( ) ( )
x'' 2

0
Ly x y x q x y x M(x t)y t d t = y x , 0 x≡ − + + − λ ≤ ≤ π∫ (1.20)

Suppose that L  has the spectrum { }nλ  with { } { }n n=λ λ  for all n under the boundary conditions (1.17) and

'y ( , ) Hy( , ) = 0π λ + π λ (1.21)
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L  with the boundary conditions (1.17) and
'

1y ( , ) H y ( , ) = 0π λ + π λ (1.22)

is assumed to have the spectrum { }nµ . Assuming that H, H1≠H, H  and  
1H H≠  are real numbers that are not 

infinite.
Denote by Λ0 the finite index set for which 

n nµ ≠ µ  and by Λ the infinite index set for which  n n= .µ µ  Under the 
above assumptions, it follows that the kernel K(x,t) is degenerate in the extended sense:


nn n

0

K(x,t)= c (x) (t)
Λ

ϕ ϕ∑ (1.23)

where ϕn and  nϕ  are suitable solutions of (1.1) and (1.4).

Proof: It follows from (1.6) that
 x' '

0

K
(x, ) = (x, ) K(x,x) (x, ) (t, )dt

x
∂

ϕ λ ϕ λ + ϕ λ + ϕ λ
∂∫ (1.24)

and

    x' '

0

K(x, ) H (x, ) = (x, ) H (x, ) K(x,x) (x, ) HK (t, )dt
x

∂ ϕ λ + ϕ λ ϕ λ + ϕ λ + ϕ λ + + ϕ λ ∂ ∫ (1.25)

Substituing x=π and λ = λn into the last equation and using the boundary conditions (1.18), we obtain

( ) 
n n n0

x=

KH H ( , ) K( , ) ( , ) HK (t, ) d t = 0
x

π

π

∂ − ϕ π λ + π π ϕ π λ + + ϕ λ ∂ ∫ (1.26)

As n→∞ and ( ) ( )n
n( , ) 1 cos1 sin1ϕ π λ → − + , the integral on the right-hand side tends to zero. Therefore, from 

(1.26) we get
K( , ) = H Hπ π − (1.27)


n0

x=

K HK (t, )d t=0 , n = 0,1,...
x

π

π

∂ + ϕ λ ∂ ∫ (1.28)

Since the systems of functions ϕ(t,λn) is complete, it follows from the last equation that

x =

K HK = 0 , 0 t
x

π

 ∂ + ≤ ≤ π
 ∂ 

 (1.29)

We now use the equation imposed on the second mentioned spectrum.  Using (1.6) again, we obtain

    x' '
1 1 1

0

K(x, ) H (x, ) = (x, ) H (x, ) K(x,x) (x, ) H K (t, )dt
x

∂ ϕ λ + ϕ λ ϕ λ + ϕ λ + ϕ λ + + ϕ λ ∂ ∫ (1.30)

Setting x=π and λ = µn (n∈Λ) and using (1.19), we get

 ( )1 1n 1 n n0
x=

K H K (t, )dt H H ( , ) K( , ) ( , ) = 0
x

π

π

∂ + ϕ µ + − ϕ π µ + π π ϕ π µ ∂ ∫ (1.31)

In the last equation as n→∞, the left-hand side tends to zero and ( ) ( )n
n( , ) 1 cos1 sin1ϕ π µ → − + . Therefore;
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11K( , ) = H Hπ π − (1.32)


1 n0

x =

K H K (t, ) d t = 0 , n
x

π

π

∂ + ϕ µ ∈Λ ∂ ∫ (1.33)

Comparing (1.27) and (1.32), we obtain H H =− 11H H .−  For n∈Λ0, relation (1.30) for ( )nx = and =π λ µ yields

   '
1 1n n n0

x=

K H K (t, )d t= ( , ) H ( , )
x

π

π

∂ + ϕ µ ϕ π µ + ϕ π µ ∂ ∫ (1.34)

It follows from (1.33) and (1.34) that

   '
1n n

1 n2
x= n0

K ( , ) H ( , )H K = (t, ) , 0 t
x (t, )Λπ

∂ ϕ π µ + ϕ π µ + ϕ µ ≤ ≤ π ∂  ϕ µ
∑ (1.35)

We derive from (1.29) and (1.35) the following equations:

 
  '

1n n
n2

1 n0

1 ( , ) H ( , )K( , t ) = (t, )
H H (t, )Λ

ϕ π µ + ϕ π µπ ϕ µ
− ϕ µ

∑ (1.36)


 

  '
1n n

n2
1x= n0

K(x,t) H ( , ) H ( , )= (t, ) , 0 t
x H H (t, )Λπ

∂ ϕ π µ + ϕ π µ  − ϕ µ ≤ ≤ π ∂ −  ϕ µ
∑ (1.37)

The function K(x,t) satisfies (1.7). Therefore, it follows from the initial conditions (1.36) and (1.37) that, in 
triangle I (Fig. 1), we have

 
  

( ) 
'

1n n
n n n2

1 n0

1 ( , ) H ( , )K(x,t)= c x, Ht(x, ) (t, )
H H (t, )Λ

ϕ π µ + ϕ π µ  µ − µ ϕ µ − ϕ µ
∑   (1.38)

where c(x, )λ  and t(x, )λ  are the solutions of (1.4) satisfying the initial conditions

( ) ( )' '
c , = t ( , ) = 1 , c , = t ( , ) = 0π λ π λ π λ π λ    (1.39)

Fig. 1:

The function K(x,t) and sum (1.38) satisfy (1.9);
therefore, they coincide in triangle II; consequently, 
they coincide in triangle III, because solutions of (1.7) 

satisfy the same initial conditions on the line x =
2
π ,

etc., i.e., K(x,t) is expressed by (1.38) throughout the 
triangle 0≤x≤t≤π.

Theorem 2: If the spectra and {λn} and { }nλ  coincide 

and {µn} and { }nµ  differ in a finite number of their 

terms, i.e.,  n n=µ µ  for n∈Λ, then

 ( )n n n

0

d
q(x) q(x)= c .

dxΛ

− ϕ ϕ∑  (1.40)
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where ϕn and  nϕ  are suitable solutions of (1.1) and (1.4)

Proof: We obtain from (1.8) the equation
 dK(x,x)
q(x) q ( x ) = 2

dx
− (1.41)

Differentiating (1.38) and setting t = x, we obtain


 

   { }
'

1n n
n n n2

1 n0

2 ( , ) H ( , ) dq(x) q(x)= c(x, ) Ht(x, ) (x, )
dxH H (t, )Λ

ϕ π µ + ϕ π µ  − µ − µ ϕ µ − ϕ µ
∑   (1.42)

Consequently,
 ( )n n n

0

d
q(x) q(x)= c .

dxΛ

− ϕ ϕ∑  (1.43)

where
 

nn nc(x, ) Ht(x, ) =µ − µ ϕ  , n n n(x, ) = (x, )ϕ µ ϕ µ

and
  

 ( )

'
1n n

n 2
1 n

2 ( , ) H ( , )
c =

H H (t, )

 ϕ π µ − ϕ π µ  
− ϕ µ

 (1.44)

This completes the proof of Theorem 2. We note 
that similar problem was investigated [7]. 
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