On an Inverse Spectral Problem for an Integro-differential Operator

${ }^{I}$ Etibar S. Panakhov and ${ }^{2}$ Murat Sat

${ }^{1}$ Department of Mathematics, Faculty of Science, Firat University, Elazig, 23119, Turkey
${ }^{2}$ Department of Mathematics, Faculty of Science and Art, Erzincan University, Erzincan, 24100, Turkey

Abstract

In this paper, we considered an inverse problem with two given spectrum for a boundary value problem with aftereffect and eigenvalue in the boundary condition and we showed that transformation operator was generalized degeneracy and we obtained a new proof of the Hochstadt's theorem concerning the structure of the difference $\tilde{q}(x)-q(x)$.

AMS subject classifications: 34C20.34L40.47E05
Key words: Aftereffect . spectrum . eigenvalue

INTRODUCTION

We consider boundary value problem with aftereffect on a finite interval and with eigenvalue in the boundary condition:

$$
\begin{aligned}
& -y^{\prime \prime}(x)+q(x) y(x)+\int_{0}^{x} M(x-t) y(t) d t \\
& =\lambda^{2} y(x), 0 \leq x \leq \pi
\end{aligned}
$$

with the boundary condition

$$
\begin{aligned}
& y^{\prime}(0, \lambda)-\lambda y(0, \lambda)=0 \\
& y^{\prime}(\pi, \lambda)+\mathrm{Hy}(\pi, \lambda)=0
\end{aligned}
$$

Here λ is spectral parameter, $q(x) \in L_{2}(0, \pi)$ and H are real parameter. The presence of an aftereffect in a mathematical model produces qualitative changes in the study of the inverse problem. In recent years, inverse spectral problems for integro differential operators have been studied by many authors including [1-4].

The generalized degeneracy of transformation operator for Sturm-Liouville and singular SturmLiouville operator was showed in [5-7].

In this paper, using Levitan's method, it was shown that kernel $K(x, t)$ of the integral equation is generalized degeneracy.

Now let us consider two boundary value problem with aftereffect on a finite interval and with eigenvalue in the boundary condition:

$$
\begin{align*}
& -y^{\prime \prime}(x)+q(x) y(x)+\int_{0}^{x} M(x-t) y(t) d t \tag{1.1}\\
& =\lambda^{2} y(x), 0 \leq x \leq \pi
\end{align*}
$$

and

$$
\begin{equation*}
y^{\prime}(0)-\lambda y(0)=0 \tag{1.2}
\end{equation*}
$$

$$
\begin{equation*}
y^{\prime}(\pi, \lambda)+\mathrm{Hy}(\pi, \lambda)=0 \tag{1.3}
\end{equation*}
$$

$$
\begin{align*}
& -y^{\prime \prime}(x)+\tilde{q}(x) y(x)+\int_{0}^{x} \widetilde{M}(x-t) y(t) d t \tag{1.4}\\
& =\lambda^{2} y(x), 0 \leq x \leq \pi
\end{align*}
$$

$$
\begin{array}{r}
y^{\prime}(0)-\lambda y(0)=0 \\
y^{\prime}(\pi, \lambda)+\widetilde{H y}(\pi, \lambda)=0 \tag{1.5}
\end{array}
$$

where $\tilde{q}(x) \in L_{2}(0, \pi)$ and \widetilde{H} is real parameter.
Denote the spectrum of the first problem by $\left\{\lambda_{n}\right\}_{n \geq 1}$ and the spectrum of the second by $\left\{\tilde{\lambda}_{n}\right\}_{n \geq 1}$. Next, we denote by $\varphi(x, \lambda)$ the solution of (1.1) and by $\tilde{\varphi}(x, \lambda)$ the solution of (1.4), satisfying the initial condition (1.2). The representation

$$
\begin{equation*}
\tilde{\varphi}(\mathrm{x}, \lambda)=\varphi(\mathrm{x}, \lambda)+\int_{0}^{\mathrm{x}} \mathrm{~K}(\mathrm{x}, \mathrm{t}) \varphi(\mathrm{t}, \lambda) \mathrm{dt} \tag{1.6}
\end{equation*}
$$

holds, where $K(x, t)$ satisfies the equation

$$
\begin{align*}
& K_{t t}(x, t)-K_{x x}(x, t)+(q(x)-\tilde{q}(t)) K(x, t) \\
& +M(x-t)-\widetilde{M}(x-t) \tag{1.7}\\
& +\int_{t}^{x}(M(x-\xi)-\widetilde{M}(x-\xi)) K(\xi, t) d \xi=0
\end{align*}
$$

and the conditions

$$
\begin{gather*}
2 \frac{d K(x, x)}{d x}=\tilde{q}(x)-q(x) \tag{1.8}\\
K(x, 0)=0 \tag{1.9}
\end{gather*}
$$

We put

$$
\begin{gather*}
\mathrm{c}_{\mathrm{n}}=\int_{0}^{\pi} \varphi^{2}\left(\mathrm{x}, \lambda_{\mathrm{n}}\right) \mathrm{dx}, \quad \tilde{c}_{\mathrm{n}}=\int_{0}^{\pi \sim 2} \tilde{\varphi}^{2}\left(\mathrm{x}, \tilde{\lambda}_{\mathrm{n}}\right) \mathrm{dx} \tag{1.10}\\
\rho(\lambda)={ }_{\lambda_{\mathrm{n}}<\lambda} \frac{1}{\mathrm{c}_{\mathrm{n}}}, \tilde{\rho}(\lambda)=\frac{1}{\tilde{\lambda}_{\mathrm{n}}<\lambda} \frac{1}{\tilde{c}_{\mathrm{n}}} \tag{1.11}
\end{gather*}
$$

The function $\rho(\lambda)(\tilde{\rho}(\lambda))$ is called the spectral function of problem (1.1)-(1.3) [(1,4), (1.5)]. Problem (1.1)-(1.3) is regarded as an unperturbed problem, while (1.4), (1.5) is considered as a perturbation of (1.1)-(1.3).

It is known fact that in [5] the knowledge of two spectra for given Sturm-Liouville equation makes it possible to recover its spectral function, i.e., to find the numbers $\left\{\mathrm{c}_{\mathrm{n}}\right\}$. More exactly, suppose that, in addition to the spectrum of problem (1.1)-(1.3), we also know the spectrum $\left\{\mu_{n}\right\}$ of the problem

$$
\begin{aligned}
& -y^{\prime \prime}(x)+q(x) y(x)+\int_{0}^{x} M(x-t) y(t) d t \\
& =\lambda^{2} y(x), 0 \leq x \leq \pi
\end{aligned}
$$

$$
\begin{equation*}
y^{\prime}(0)-\lambda y(0)=0 \tag{1.12}
\end{equation*}
$$

$$
y^{\prime}(\pi, \lambda)+\mathrm{H}_{1} \mathrm{y}(\pi, \lambda)=0, \mathrm{H}_{1} \neq \mathrm{H}
$$

Knowing $\left\{\lambda_{n}\right\}$ and $\left\{\mu_{n}\right\}$, we can calculate the numbers $\left\{\mathrm{c}_{\mathrm{n}}\right\}$. Similarly, for (1.4), if, in addition to $\left\{\tilde{\lambda}_{n}\right\}$, we also know the spectrum $\left\{\tilde{\mu}_{n}\right\}$ determined by the boundary conditions

$$
\begin{gather*}
\mathrm{y}^{\prime}(0)-\lambda \mathrm{y}(0)=0 \\
\mathrm{y}^{\prime}(\pi, \lambda)+\widetilde{\mathrm{H}}_{1} \mathrm{y}(\pi, \lambda)=0, \widetilde{\mathrm{H}}_{1} \neq \widetilde{\mathrm{H}} \tag{1.13}
\end{gather*}
$$

then it follows that we can determine the numbers $\left\{\tilde{\mathbf{c}}_{n}\right\}$. It is also shown that in [4]

$$
\begin{gather*}
\lambda_{\mathrm{n}}=\mathrm{n}+\frac{1}{\pi}+\frac{\mathrm{H}}{\mathrm{n} \pi}+\frac{1}{2 \mathrm{n} \pi} \int_{0}^{\pi} \mathrm{q}(\mathrm{t}) \mathrm{dt}+\frac{\mathrm{k}_{\mathrm{n}}}{\mathrm{n}},\left\{\mathrm{k}_{\mathrm{n}}\right\} \in 1_{2} \text { and } \mathrm{n} \in \mathbb{N}-\{0\} \tag{1.14}\\
\varphi(\mathrm{x}, \lambda)=\cos \lambda \mathrm{x}+\sin \lambda \mathrm{x}+\frac{1}{\lambda} \int_{0}^{\mathrm{x}} \sin \lambda(\mathrm{x}-\tau)\left[\mathrm{q}(\tau) \varphi(\tau, \lambda)+\int_{0}^{\tau} \mathrm{M}(\tau-\mathrm{s}) \varphi(\mathrm{s}, \lambda) \mathrm{ds}\right] \mathrm{d} \tau \tag{1.15}
\end{gather*}
$$

Theorem 1. Consider the operator

$$
\begin{equation*}
\operatorname{Ly}(x) \equiv-y^{\prime \prime}(x)+q(x) y(x)+\int_{0}^{x} M(x-t) y(t) d t=\lambda^{2} y(x), 0 \leq x \leq \pi \tag{1.16}
\end{equation*}
$$

subject to the boundary conditions

$$
\begin{gather*}
y^{\prime}(0)-\lambda y(0)=0 \tag{1.17}\\
y^{\prime}(\pi, \lambda)+\mathrm{Hy}(\pi, \lambda)=0 \tag{1.18}
\end{gather*}
$$

Let $\left\{\lambda_{n}\right\}$ be the spectrum of L subject to (1.17) and (1.18).
If (1.18) is replaced by the new boundary condition

$$
\begin{equation*}
\mathrm{y}^{\prime}(\pi, \lambda)+\mathrm{H}_{1} \mathrm{y}(\pi, \lambda)=0 \tag{1.19}
\end{equation*}
$$

then a new operator and a new spectrum, say $\left\{\mu_{\mathrm{n}}\right\}$, result.
Now, consider the second operator

$$
\begin{equation*}
\tilde{L} y(x) \equiv-y^{\prime \prime}(x)+\tilde{q}(x) y(x)+\int_{0}^{x} \widetilde{M}(x-t) y(t) d t=\lambda^{2} y(x), 0 \leq x \leq \pi \tag{1.20}
\end{equation*}
$$

Suppose that \widetilde{L} has the spectrum $\left\{\tilde{\lambda}_{n}\right\}$ with $\left\{\tilde{\lambda}_{n}\right\}=\left\{\lambda_{n}\right\}$ for all n under the boundary conditions (1.17) and

$$
\begin{equation*}
y^{\prime}(\pi, \lambda)+\widetilde{H} y(\pi, \lambda)=0 \tag{1.21}
\end{equation*}
$$

$\widetilde{\mathrm{L}}$ with the boundary conditions (1.17) and

$$
\begin{equation*}
y^{\prime}(\pi, \lambda)+\widetilde{H}_{1 y}(\pi, \lambda)=0 \tag{1.22}
\end{equation*}
$$

is assumed to have the spectrum $\left\{\tilde{\mu}_{n}\right\}$. Assuming that $H, H_{1} \neq H, \widetilde{H}$ and $\widetilde{H}_{1} \neq \widetilde{H}$ are real numbers that are not infinite.

Denote by Λ_{0} the finite index set for which $\tilde{\mu}_{\mathrm{n}} \neq \mu_{\mathrm{n}}$ and by Λ the infinite index set for which $\tilde{\mu}_{\mathrm{n}}=\mu_{\mathrm{n}}$. Under the above assumptions, it follows that the kernel $\mathrm{K}(\mathrm{x}, \mathrm{t})$ is degenerate in the extended sense:

$$
\begin{equation*}
K(x, t)=\sum_{\Lambda_{0}} c_{n} \tilde{\varphi}_{n}(x) \varphi_{n}(t) \tag{1.23}
\end{equation*}
$$

where φ_{n} and $\tilde{\varphi}_{\mathrm{n}}$ are suitable solutions of (1.1) and (1.4).
Proof: It follows from (1.6) that

$$
\begin{equation*}
\tilde{\varphi}^{\prime}(\mathrm{x}, \lambda)=\varphi^{\prime}(\mathrm{x}, \lambda)+\mathrm{K}(\mathrm{x}, \mathrm{x}) \varphi(\mathrm{x}, \lambda)+\int_{0}^{\mathrm{x}} \frac{\partial \mathrm{~K}}{\partial \mathrm{x}} \varphi(\mathrm{t}, \lambda) \mathrm{dt} \tag{1.24}
\end{equation*}
$$

and

$$
\begin{equation*}
\tilde{\varphi}^{\prime}(\mathrm{x}, \lambda)+\widetilde{\mathrm{H}} \tilde{\varphi}(\mathrm{x}, \lambda)=\varphi^{\prime}(\mathrm{x}, \lambda)+\widetilde{\mathrm{H}} \varphi(\mathrm{x}, \lambda)+\mathrm{K}(\mathrm{x}, \mathrm{x}) \varphi(\mathrm{x}, \lambda)+\int_{0}^{\mathrm{x}}\left(\frac{\partial \mathrm{~K}}{\partial \mathrm{x}}+\widetilde{\mathrm{H} K}\right) \varphi(\mathrm{t}, \lambda) \mathrm{dt} \tag{1.25}
\end{equation*}
$$

Substituing $\mathrm{x}=\pi$ and $\lambda=\lambda_{\mathrm{n}}$ into the last equation and using the boundary conditions (1.18), we obtain

$$
\begin{equation*}
(\widetilde{\mathrm{H}}-\mathrm{H}) \varphi\left(\pi, \lambda_{\mathrm{n}}\right)+\mathrm{K}(\pi, \pi) \varphi\left(\pi, \lambda_{\mathrm{n}}\right)+\int_{0}^{\pi}\left(\frac{\partial \mathrm{K}}{\partial \mathrm{x}}+\widetilde{\mathrm{H}} \mathrm{~K}\right)_{\mathrm{x}=\pi} \varphi\left(\mathrm{t}, \lambda_{\mathrm{n}}\right) \mathrm{dt}=0 \tag{1.26}
\end{equation*}
$$

As $\mathrm{n} \rightarrow \infty$ and $\varphi\left(\pi, \lambda_{\mathrm{n}}\right) \rightarrow(-1)^{\mathrm{n}}(\cos 1+\sin 1)$, the integral on the right-hand side tends to zero. Therefore, from (1.26) we get

$$
\begin{gather*}
\mathrm{K}(\pi, \partial \mathrm{t}=\mathrm{H}-\widetilde{\mathrm{H}} \tag{1.27}\\
\int_{0}^{\pi}\left(\frac{\partial \mathrm{K}}{\partial \mathrm{x}}+\widetilde{\mathrm{H} K}\right)_{\mathrm{x}=\pi} \varphi\left(\mathrm{t}, \lambda_{\mathrm{n}}\right) \mathrm{dt}=0, \mathrm{n}=0,1, \ldots \tag{1.28}
\end{gather*}
$$

Since the systems of functions $\varphi\left(t, \lambda_{\mathrm{n}}\right)$ is complete, it follows from the last equation that

$$
\begin{equation*}
\left(\frac{\partial K}{\partial x}+\tilde{H} K\right)_{x=\pi}=0,0 \leq t \leq \pi \tag{1.29}
\end{equation*}
$$

We now use the equation imposed on the second mentioned spectrum. Using (1.6) again, we obtain

$$
\begin{equation*}
\tilde{\varphi}^{\prime}(\mathrm{x}, \lambda)+\widetilde{\mathrm{H}}_{\mathrm{l}} \tilde{\varphi}(\mathrm{x}, \lambda)=\varphi^{\prime}(\mathrm{x}, \lambda)+\widetilde{\mathrm{H}}_{1} \varphi(\mathrm{x}, \lambda)+\mathrm{K}(\mathrm{x}, \mathrm{x}) \varphi(\mathrm{x}, \lambda)+\int_{0}^{\mathrm{x}}\left(\frac{\partial \mathrm{~K}}{\partial \mathrm{x}}+\widetilde{\mathrm{H}}_{\mathrm{l}} \mathrm{~K}\right) \varphi(\mathrm{t}, \lambda) \mathrm{dt} \tag{1.30}
\end{equation*}
$$

Setting $\mathrm{x}=\pi$ and $\lambda=\mu_{\mathrm{n}}(\mathrm{n} \in \Lambda)$ and using (1.19), we get

$$
\begin{equation*}
\int_{0}^{\pi}\left(\frac{\partial \mathrm{K}}{\partial \mathrm{x}}+\widetilde{\mathrm{H}}_{1} \mathrm{~K}\right)_{\mathrm{x}=\pi} \varphi\left(\mathrm{t}, \mu_{\mathrm{n}}\right) \mathrm{dt}+\left(\widetilde{\mathrm{H}}_{1}-\mathrm{H}_{1}\right) \varphi\left(\pi, \mu_{\mathrm{n}}\right)+\mathrm{K}(\pi, \pi) \varphi\left(\pi, \mu_{\mathrm{n}}\right)=0 \tag{1.31}
\end{equation*}
$$

In the last equation as $n \rightarrow \infty$, the left-hand side tends to zero and $\varphi\left(\pi, \mu_{n}\right) \rightarrow(-1)^{n}(\cos 1+\sin 1)$. Therefore;

$$
\begin{equation*}
\mathrm{K}(\pi, \pi)=\mathrm{H}_{1}-\widetilde{\mathrm{H}}_{1} \tag{1.32}
\end{equation*}
$$

$$
\begin{equation*}
\int_{0}^{\pi}\left(\frac{\partial \mathrm{K}}{\partial \mathrm{x}}+\widetilde{\mathrm{H}}_{1} \mathrm{~K}\right)_{\mathrm{x}=\pi} \varphi\left(\mathrm{t}, \mu_{\mathrm{n}}\right) \mathrm{dt}=0, \mathrm{n} \in \Lambda \tag{1.33}
\end{equation*}
$$

Comparing (1.27) and (1.32), we obtain $H-\widetilde{H}=H_{1}-\widetilde{H}_{1}$. For $n \in \Lambda_{0}$, relation (1.30) for ($\mathrm{x}=\pi$ and $\lambda=\mu_{\mathrm{n}}$) yields

$$
\begin{equation*}
\int_{0}^{\pi}\left(\frac{\partial \mathrm{K}}{\partial \mathrm{x}}+\widetilde{\mathrm{H}}_{1} \mathrm{~K}\right)_{\mathrm{x}=\pi} \varphi\left(\mathrm{t}, \mu_{\mathrm{n}}\right) \mathrm{dt}=\tilde{\varphi}\left(\pi, \mu_{\mathrm{n}}\right)+\widetilde{\mathrm{H}}_{1} \tilde{\varphi}\left(\pi, \mu_{\mathrm{n}}\right) \tag{1.34}
\end{equation*}
$$

It follows from (1.33) and (1.34) that

$$
\begin{equation*}
\left(\frac{\partial \mathrm{K}}{\partial \mathrm{x}}+\widetilde{\mathrm{H}}_{1} \mathrm{~K}\right)_{\mathrm{x}=\pi}=\sum_{\Lambda_{0}} \frac{\tilde{\varphi}\left(\pi, \mu_{\mathrm{n}}\right)+\widetilde{\mathrm{H}}_{1} \tilde{\varphi}\left(\pi, \mu_{\mathrm{n}}\right)}{\|\left.\varphi\left(\mathrm{t}, \mu_{\mathrm{n}}\right)\right|^{2}} \varphi\left(\mathrm{t}, \mu_{\mathrm{n}}\right), 0 \leq \mathrm{t} \leq \pi \tag{1.35}
\end{equation*}
$$

We derive from (1.29) and (1.35) the following equations:

$$
\begin{gather*}
\mathrm{K}(\pi, \mathrm{t})=\frac{1}{\widetilde{\mathrm{H}}_{1}-\widetilde{\mathrm{H}}} \sum_{\Lambda_{0}} \frac{\tilde{\varphi^{\prime}}\left(\pi, \mu_{\mathrm{n}}\right)+\widetilde{\mathrm{H}}_{1} \tilde{\varphi}\left(\pi, \mu_{\mathrm{n}}\right)}{\left\|\varphi\left(\mathrm{t}, \mu_{\mathrm{n}}\right)\right\|^{2}} \varphi\left(\mathrm{t}, \mu_{\mathrm{n}}\right) \tag{1.36}\\
\left(\frac{\partial \mathrm{K}(\mathrm{x}, \mathrm{t})}{\partial \mathrm{x}}\right)_{\mathrm{x}=\pi}=-\frac{\widetilde{\mathrm{H}}}{\widetilde{\mathrm{H}}_{1}-\widetilde{\mathrm{H}}_{\Lambda_{0}}} \sum_{\tilde{\varphi}_{0}\left(\pi, \mu_{\mathrm{n}}\right)+\widetilde{\mathrm{H}}_{1} \tilde{\varphi}\left(\pi, \mu_{\mathrm{n}}\right)}^{\left\|\varphi\left(\mathrm{t}, \mu_{\mathrm{n}}\right)\right\|^{2}} \varphi\left(\mathrm{t}, \mu_{\mathrm{n}}\right), 0 \leq \mathrm{t} \leq \pi \tag{1.37}
\end{gather*}
$$

The function $K(x, t)$ satisfies (1.7). Therefore, it follows from the initial conditions (1.36) and (1.37) that, in triangle I (Fig. 1), we have

$$
\begin{equation*}
\mathrm{K}(\mathrm{x}, \mathrm{t})=\frac{1}{\widetilde{\mathrm{H}}_{1}-\widetilde{\mathrm{H}}} \sum_{\Lambda_{0}} \frac{\tilde{\varphi}\left(\pi, \mu_{\mathrm{n}}\right)+\widetilde{H}_{1} \tilde{\varphi}\left(\pi, \mu_{\mathrm{n}}\right)}{\|\left.\varphi\left(\mathrm{t}, \mu_{\mathrm{n}}\right)\right|^{2}}\left[\tilde{\mathrm{c}}\left(\mathrm{x}, \mu_{\mathrm{n}}\right)-\widetilde{\mathrm{H} t}\left(\mathrm{x}, \mu_{\mathrm{n}}\right)\right] \varphi\left(\mathrm{t}, \mu_{\mathrm{n}}\right) \tag{1.38}
\end{equation*}
$$

where $\tilde{c}(x, \lambda)$ and $\tilde{t}(x, \lambda)$ are the solutions of (1.4) satisfying the initial conditions

$$
\begin{equation*}
\tilde{c}(\pi, \lambda)=\tilde{t}^{\prime}\left(\pi, \lambda=1, \tilde{c}^{\prime}(\pi, \lambda)=\tilde{t}(\pi, \lambda)=0\right. \tag{1.39}
\end{equation*}
$$

Fig. 1:

The function $K(x, t)$ and sum (1.38) satisfy (1.9); therefore, they coincide in triangle II; consequently, they coincide in triangle III, because solutions of (1.7) satisfy the same initial conditions on the line $x=\frac{\pi}{2}$, etc., i.e., $K(x, t)$ is expressed by (1.38) throughout the triangle $0 \leq x \leq t \leq \pi$.

Theorem 2: If the spectra and $\left\{\lambda_{n}\right\}$ and $\left\{\tilde{\lambda}_{n}\right\}$ coincide and $\left\{\mu_{n}\right\}$ and $\left\{\tilde{\mu}_{n}\right\}$ differ in a finite number of their terms, i.e., $\tilde{\mu}_{\mathrm{n}}=\mu_{\mathrm{n}}$ for $\mathrm{n} \in \Lambda$, then

$$
\begin{equation*}
\tilde{\mathrm{q}}(\mathrm{x})-\mathrm{q}(\mathrm{x})=\sum_{\Lambda_{0}} \tilde{\mathrm{c}}_{\mathrm{n}} \frac{\mathrm{~d}}{\mathrm{dx}}\left(\tilde{\varphi}_{\mathrm{n}} \cdot \varphi_{\mathrm{n}}\right) \tag{1.40}
\end{equation*}
$$

where φ_{n} and $\tilde{\varphi}_{\mathrm{n}}$ are suitable solutions of (1.1) and (1.4)

Proof: We obtain from (1.8) the equation

$$
\begin{equation*}
\tilde{q}(x)-q(x)=2 \frac{d K(x, x)}{d x} \tag{1.41}
\end{equation*}
$$

Differentiating (1.38) and setting $\mathrm{t}=\mathrm{x}$, we obtain

$$
\begin{equation*}
\tilde{\mathrm{q}}(\mathrm{x})-\mathrm{q}(\mathrm{x})=\frac{2}{\widetilde{\mathrm{H}}_{1}-\widetilde{\mathrm{H}}} \sum_{\Lambda_{0}} \frac{\tilde{\varphi}\left(\pi, \mu_{\mathrm{n}}\right)+\widetilde{\mathrm{H}}_{1} \tilde{\varphi}\left(\pi, \mu_{\mathrm{n}}\right)}{\left\|\varphi\left(\mathrm{t}, \mu_{\mathrm{n}}\right)\right\|^{2}} \frac{\mathrm{~d}}{\mathrm{dx}}\left\{\left[\tilde{\mathrm{c}}\left(\mathrm{x}, \mu_{\mathrm{n}}\right)-\widetilde{\mathrm{H}} \tilde{t}\left(\mathrm{x}, \mu_{\mathrm{n}}\right)\right] \varphi\left(\mathrm{x}, \mu_{\mathrm{n}}\right)\right\} \tag{1.42}
\end{equation*}
$$

Consequently,

$$
\begin{equation*}
\tilde{\mathrm{q}}(\mathrm{x})-\mathrm{q}(\mathrm{x})=\sum_{\Lambda_{0}} \tilde{\mathrm{c}}_{\mathrm{n}} \frac{\mathrm{~d}}{\mathrm{dx}}\left(\tilde{\varphi}_{\mathrm{n}} \cdot \varphi_{\mathrm{n}}\right) \tag{1.43}
\end{equation*}
$$

where

$$
\tilde{c}\left(x, \mu_{n}\right)-\widetilde{H} \tilde{t}\left(x, \mu_{n}\right)=\tilde{\varphi}_{n}, \varphi\left(x, \mu_{n}\right)=\varphi_{n}\left(x, \mu_{n}\right)
$$

and

$$
\begin{equation*}
\tilde{c}_{\mathrm{n}}=\frac{2\left[\tilde{\varphi}^{\prime}\left(\pi, \mu_{\mathrm{n}}\right)-\widetilde{\mathrm{H}}_{1} \tilde{\varphi}\left(\pi, \mu_{\mathrm{n}}\right)\right]}{\left(\widetilde{\mathrm{H}}_{1}-\widetilde{\mathrm{H}}\right) \mid \varphi\left(\mathrm{t}, \mu_{\mathrm{n}}\right) \|^{2}} \tag{1.44}
\end{equation*}
$$

This completes the proof of Theorem 2. We note that similar problem was investigated [7].

REFERENCES

1. Freiling, G. and V.A. Yurko, 2001. Inverse SturmLiouville problems and their applications. NOVA science Publishers, New York.
2. Kuryshova Yu, 2007. The inverse spectral problem for integro-differential operators. Mat. Zametki, 81: 855-866; English translation in Math. Notes, 81: 767-777.
3. Buterin, S., 2007. On an inverse spectral problem for a convulation integro-differential operator. Result in Mathematics, 50: 173-181.
4. Dabbaghian, A.H., S. Akbarpoor and J. Vahidi, 2011. The uniqueness theorem for boundary value problem with aftereffect and eigenvalue in the boundary condition. The journal of Mathematics and Computer Science, 2: 483-487.
5. Levitan, B.M., 1978. On the determination of the Sturm-Liouville operator from one and two spectra. Izv. Akad. Nauk SSSR, Ser. Mat., 42: 185-199.
6. Panakhov, E.S. and R. Yilmazer, 2006. On inverse problem for singular Sturm-Liouville operator from two spectra. Ukrainian Mathematical Journal, 58: 147-154.
7. Hochstadt, H., 1973. The inverse Sturm-Liouville problem. Commun. Pure Appl. Math., 106: 715-729.
8. Hochstadt H., 1973. The inverse Sturm-Liouville problem, Commun. Pure Appl. Math. 106 715-729.
