Implications of Changing Trends of Commercial and Strategic Oil Reserves on International Oil Prices; A Study Between 2002 and 2007

Abdolkarim Gayem

Petroleum University of Technology (PUT), Abadan, Iran

Abstract: When oil crisis occurred in the world in 1973 followed by the occurrence of Islamic Revolution of Iran in 1979, because of the lack of the capability for the potential production, it was a great shock for the oil market. In addition to the excess of the production capacities of the producing countries, the consumer countries considered that a determining security, which is a vital factor for oil the consumer countries to be used in critical situations. The security list can be obtained from reserve operations and the investments on oil producer countries. One of the ways to obtain security list is the creation of crude oil reserves and their products. There is empirical and theoretical evidence that commercial and strategic oil reserves may be affected by the oil prices. Nowadays, soft computing (computational intelligence) models, as an intelligent approach, can be used to predict prices. The purpose of the study was to investigate the implications of changing trends of commercial and strategic oil reserves on international oil prices, a study between 2002 and 2007. Fuzzy logic, Genetic Algorithm, Artificial Neural Network and ANFIS are some kinds of computational intelligence. In this study, Back-propagation neural network (BPNN) approach was used to design and train Artificial Neural Network (ANN) capability of predicting prices for fields data in cases based on inputs selected to construct network and results showing good accuracy of these modeling techniques for the case according to error analysis.

Key words: Oil · Market · Strategic · ANN · BPNN

INTRODUCTION

According to American Petroleum Institute (API) [1], the oil and natural gas industry’s segments include steps in finding, producing, processing, transporting and marketing oil and natural gas. API breaks the oil and natural gas industries down into five major sectors, including the Service and Supply sector, the Marine sector, the Pipeline sector, the Refining and Marketing (downstream) sector and the Exploration and Production (upstream) sector [2]. The upstream segment deals with the exploration and production of oil and natural gas using tools ranging from cutting-edge geology to high-tech offshore drilling platforms [1]. One of the main benefits why technology has been applied to the upstream sector is the elimination of poor prospects, which substantially reduces costs involved with drilling a dry hole. Technology also improves the recovery processes allowing more petroleum and natural gas to be extracted, but the most impressive is the ability to produce from reservoirs that were never accessible or known. The greatest benefit that technology provides to the oil industry is to make processes safer. Any technology that can prevent explosions like the BP refinery in Texas during 2005 is needed [3].

The importance of oil and the fluctuations together made the consumer countries, especially the industrial countries, attempt to save their economics from the impacts of the oil market fluctuations. Thus, energy security became meaningful for the consumer countries. One of the ways to obtain security list is the creation of crude oil reserves and their products. The fact that has been less considered is why there should be increase in the oil prices as opposed to other changes in the oil market in different periods of time. Thus, it is a one way process of increase in oil prices from 2002 onwards. The study of oil prices and oil reserves show that the oil market does not allow the oil consumers to interfere, which results in higher prices. This compelled the

Corresponding Author: Abdolkarim Gayem, Petroleum University of Technology (PUT), Abadan, Iran.
Fax/Tel: +986313332406.
consumers to take active part in their price decisions. From the start of creating the strategic and commercial oil reserves, these reservoirs were known as the effective factors for the oil market situations and changes in reserves resulting in different supplies and demands in the markets [4-7].

Related areas have been covered by earlier scholars, for example Jeffrey Arrett has presented the American Government Accountability Office (GAO) in the US study of the Strategic Petroleum Reserves (SPR): Available oil can provide significant benefits, but decisions about fill, use and expansion are difficult [5]. Also, McCabe (2007) has depicted long-term Commercial Oil Reserves and long-term oil consumption. A comparison of consumption and commercial reserves patterns reveals a real decrease in the ability of commercial levels to sustain consumption at any given time [6].

In this study, Back-Propagation Neural Network (BPNN) approach was used to design and train Artificial Neural Network (ANN), capability of predicting prices for field’s data in cases based on inputs selected to construct networks and results showing good accuracy of these modeling techniques for the case according to error analysis.

Introducing Strategic and Commercial Oil Reserves

Strategic Petroleum Reserves (SPR): SPR’s are restored for strategic purposes and saving the economics from certain affective factors. Countries are less willing to restore them (Due to government regulations they are being controlled by) [7].

Commercial Petroleum Reserves: They are restored for commercial purposes and they often follow two goals of selling with the higher rates or avoiding buying the when rates of oil are high.

History of the World Strategic (Oil) Petroleum Reserves (SPR): From the mid-1970s until 2006, world markets have had to absorb roughly five significant spikes in the price of crude oil and petroleum products. Whether driven by disruptions in the physical supply of crude or refined fuels, or by uncertainties owing to international conflicts and instabilities, these price increases can have consequences for the United States balance of trade and, owing to the relative inelasticity of demand for gasoline at prices up to $3.00 per gallon, siphon away disposable income that might be spent to support other economic activities or savings.

The origin of the U.S. Strategic Petroleum Reserve (SPR) stems from the 1973 Arab-Israeli War. In response to the United States support for Israel, the Organization of Arab Exporting Countries (OAPEC) imposed reduced productions. While some Arab crude did reach the United States, the price of imported crude oil rose from roughly $4/barrel (bbl.) during the last quarter of 1973 to an average price of $12.50/bbl. in 1974. While no amount of strategic stocks can insulate any oil-consuming nation from paying the market price for oil in a supply emergency, the availability of strategic stocks can help blunt the magnitude of the market’s reaction to a crisis. More importantly, one of the original perceptions of the value of a strategic stockpile was that its very existence would discourage the use of oil as a political weapon. The embargo imposed by the Arab producers was a stark, politically motivated event intended to create a very discernible physical disruption. This probably explains, in part, why the genesis of the SPR was focused especially on deliberate and dramatic physical disruptions of oil flow.

In response to the experience of the embargo, US Congress authorized the Strategic Petroleum Reserve (SPR) in the Energy Policy and Conservation Act, Act (EPCA, P.L. 94-163) to help prevent a repetition of the economic dislocation caused by the Arab oil embargo. The program is managed by the Department of Energy (DOE) [8].

Physically, the SPR comprises five underground storage facilities, hollowed out from naturally occurring salt domes, located in Texas and Louisiana. The caverns were finished by injecting water and removing brine. Similarly, oil is removed by displacing it with water injection. For this reason, crude stored in the SPR remains undisturbed, except in the event of a sale or exchange. Multiple injections of water, over time, will compromise the structural integrity of the caverns. By 2005, the capacity of the SPR reached 727 million barrels.

Stored at one SPR site, Weeks Island, was transferred after problems with the structural integrity of the cavern unrelated to drawdown activity were discovered in the mid 1990s. It held virtually 700 million barrels before Hurricanes Katrina and Rita in 2005. Following the storms, some crude was loaned or sold, leaving the Reserve with 685 million barrels in the mid-March 2006.

As already noted, it was hoped that the creation of a significant operational reserve of crude oil would discourage the use of oil as a weapon. In the event of an interruption, introduction into the market of oil from the
Reserve was expected to help calm markets, mitigate sharp price spikes and reduce the economic dislocation that had accompanied the 1973 disruption. In so doing, the Reserve would also buy time - time for the crisis to sort itself out or for diplomacy to seek some resolution before potentially severe oil shortage escalated the crisis beyond diplomacy. The SPR was to contain enough crude oil to replace imports for 90 days, with an initial goal of 500 million barrels in storage. In May 1978, plans for a 750-million-barrel Reserve were implemented. SPR oil is sold by competitive sales [9,10].

A notice of Sale is issued, including the volume, characteristics and location of the petroleum for sale, delivery dates and procedures for submitting offers, as well as measures for assuring performance and financial responsibilities. Bids are reviewed by DOE and awards offered. The Department of Energy (DOE) estimates that oil could enter the market roughly two weeks after the appearance of a notice of sale [11]. The International Energy Agency (IEA) was established to develop plans and measures for emergency responses to energy crises. “Strategic stocks” is one of the policies included in the agency International Energy Program (IEP). Signatories to the IEA are committed to maintaining emergency reserves, developing programs for demand restraint in the event of emergencies and agreeing to participate in allocation of oil deliveries among the signatory nations to balance the shortage among IEA members. While the U.S. SPR holds government-held crude oil stocks, some IEA nations require a level of stocks to be held by the private sector or by both the public and private sectors. Including the US SPR, roughly two-thirds of IEA stocks are held by the oil industry, whereas one-third is held by governments and supervisory agencies [12].

History of the World Commercial Oil Reserve:
Established in 1975 in the aftermath of the OPEC oil embargo, the commercial petroleum reserve was originally intended to hold at least 750 million barrels of crude oil as an insurance policy against future supply cutoffs (the maximum size was later reduced when a geologically unstable storage site was decommissioned). The original intent was to fill the commercial oil reserves primarily by purchasing crude oil on the open market. Concern over the vulnerability of the United States to additional oil cutoffs prompted the federal government to purchase most of the oil for the commercial oil reserves in the late 1970s and early 1980s when world oil prices often exceeded $30 per barrel. Since that time, world oil prices have fluctuated from the mid-teens to the current oil in the commercial oil reserves, which reflects the value of the crude oil at the time it was acquired.

During the 30 years that the commercial petroleum reserves have existed, crude oil has been acquired for 25 countries. Oil is categorized as either "sweet" (with a sulfur content not exceeding 0.5 percent by weight) or "sour" (with sulfur content greater than 0.5 percent but less than 0.2 percent). The commercial oil reserve accepts only crude oil that meets its quality specifications and it is co-mingled in caverns designated as either sweet or sour. Salt formations offer the lowest cost, most environmentally secure way to store crude oil for long periods of time. Storing oil in above-ground tanks, by comparison, can cost $15 to $18 per barrel - or at least five times the expense. Also, because the salt caverns are 2,000-4,000 feet below the surface, geologic pressures will seal any crack that develops in the salt formation, assuring that no crude oil leaks from the cavern. An added benefit is the natural temperature difference between the top of the caverns and the bottom - a distance of around 2,000 feet: the temperature differential keeps the crude oil continuously circulating in the caverns, giving the oil a consistent quality.

History of Oil Prices: Crude oil prices behave much as any other commodity with wide price-swings in times of shortage or oversupply. The crude oil price cycle may extend over several years responding to changes in demand as well as OPEC and non-OPEC supplies. The U.S. petroleum industry's price has been heavily regulated through production or price controls throughout much of the twentieth century. In the post-world War II era U.S. oil prices at the wellhead averaged $24.20 per barrel adjusted for inflation to 26.00 dollars. In the absence of price controls, the U.S. price would have tracked the world price averaging $26.16. Over the same post war period, the median for the domestic and the adjusted world price of crude oil was $18.53 in 2006 prices. That means that only fifty percent of the time (from 1947 to 2006)oil prices exceeded $18.53 per barrel.

Until the March 28, 2000 adoption of the $22-$28 price band for the OPEC basket of crude, oil prices only exceeded $24.00 per barrel in response to the war or
conflict in the Middle East. With limited spare production capacity, OPEC abandoned its price band in 2005 and was powerless to stem a surge in oil prices, which was reminiscent of the late 1970’s.

Post-World War II

Pre-Embargo Period: Crude Oil prices ranged between $2.50 and $3.00 from 1948 through the end of the 1960’s. The price oil rose from $2.50 in 1948 to about $3.00 in 1957. When viewed in 2006 dollars, an entirely different story emerges with crude oil prices fluctuating between $17 and $18 during the same period. The apparent 20% price increase just kept up with inflation.

From 1958 to 1970, prices were stable at about $3.00 per barrel, but in real terms, the price of crude oil declined from above $17 to below $14 per barrel. The decline in the price of crude, when adjusted for inflation, was amplified for the international producer in 1971 and 1972 by the weakness of the US dollar.

OPEC was formed in 1960 with five founding members: Iran, Iraq, Kuwait, Saudi Arabia and Venezuela. Two of the representatives at the initial meetings had studied the Texas Railroad Commission’s methods of influencing price through limitations on production. By the end of 1971, six other nations had joined the group: Qatar, Indonesia, Libya, United Arab Emirates, Algeria and Nigeria. From the foundation of the Organization of Petroleum Exporting Countries through 1972, member countries experienced steady decline in the purchasing power of a barrel of oil. Throughout the post-war period, exporting countries found increasing demand for their crude oil but a 40% decline in the purchasing power of a barrel of oil. In March 1971, the balance of power shifted. That month, the Texas Railroad Commission set proration at 100 percent for the first time. This meant that Texas producers were no longer limited in the amount of oil that they could produce. More importantly, it meant that the power to control crude oil prices shifted from the United States (Texas, Oklahoma and Louisiana) to OPEC. Another way to say it is that there was no more spare capacity and, therefore no tool to put an upper limit on prices. A little over two years later, OPEC would, through the unintended consequence of war, get a glimpse at the extent of its power to influence prices.

Middle East Supply Interruptions

Yom Kippur War -Arab Oil Embargo: In 1972, the price of crude oil was about $3.00 per barrel and by the end of 1974, the price of oil had quadrupled to over $12.00. The Yom Kippur War started with an attack on Israel by Syria and Egypt on October 5, 1973. The United States and many countries in the western world showed support for Israel. As a result of this support, several Arab exporting nations imposed an embargo on the countries supporting Israel. While Arab nations curtailed production by 5 million barrels per day (MMBPD), about 1 MMBPD was made up by increased production in other countries. The net loss of 4 MMBPD extended through March of 1974 and represented 7 percent of the free world production. If there was any doubt that the ability to control crude oil prices had passed from the United States to OPEC, it was removed during the Arab Oil Embargo. The extreme sensitivity of prices to supply shortages became all too apparent when prices increased 400 percent in six short months. From 1974 to 1978, world crude oil prices were relatively flat, ranging from $12.21 to $13.55 per barrel. When adjusted for inflation, the price over that period of time world, oil prices were in a period of moderate decline.

Crisis in Iran and Iraq: Events in Iran and Iraq led to another round of crude oil price increases in 1979 and 1980. The Iranian revolution resulted in the loss of 2 to 2.5 million barrels per day of oil production between November, 1978 and June, 1979. At one point, production almost halted.

While the Iranian revolution was the proximate cause of what would be the highest prices in post-WWII history, its impact on prices would have been limited and of relatively short duration had it not been for subsequent events. Shortly after the revolution, production was up to 4 million barrels per day.

Iran, weakened by the revolution, was invaded by Iraq in September, 1980. By November, the combined production of both countries was only a million barrels per day and 6.5 million barrels per day less than a year before. As a consequence, worldwide crude oil production was 10 percent lower than that in 1979.

The combination of the Iranian revolution and the Iran-Iraq War caused crude oil prices to be more than double increasing from $14 in 1978 to $35 per barrel in 1981. Twenty six years later, Iran’s production was only two-thirds of the level reached under the government of Reza Pahlavi, the former Shah of Iran. Iraq’s production remained about 1.5 million barrels below its peak before the Iraq-Iran War.
OPEC’s Failure to Control Crude Oil Prices: OPEC continued to have mixed success in controlling prices. There were mistakes in timing of quota changes as well as the usual problems in maintaining production discipline among its member countries.

The price increases came to a rapid end in 1997 and 1998 when the impact of the economic crisis in Asia was either ignored or severely underestimated by OPEC. In December, 1997, OPEC increased its quota by 2.5 million barrels per day (10 percent) to 27.5 MMBPD effective January 1, 1998. The rapid growth in Asian economies had come to a halt. In 1998, Asian Pacific oil consumption declined for the first time since 1982. The combination of lower consumption and higher OPEC production sent prices into a downward spiral. In response, OPEC cut quotas by 1.25 million b/d in April and another 1.335 million in July. Price continued down through December 1998.

Prices began to recover in early 1999 and OPEC reduced production another 1.719 million barrels in April. As usual, not all of the quotas were observed but between early 1998 and the middle of 1999, OPEC production dropped by about 3 million barrels per day, which was sufficient to move prices above $25 per barrel.

With minimal Y2K problems and growing US and world economies, the price continued to rise throughout 2000 to a post-1981 high. Between April and October, 2000, three successive OPEC quota increases totaling 3.2 million barrels per day were not able to stem the price increases. Prices, finally, started down following another quota increase of 500,000 effective November 1, 2000.

Russian production increases dominated non-OPEC production growth from 2000 forward and was responsible for most of the non-OPEC increase since the turn of the century.

Once again, it appeared that OPEC overshot the mark. In 2001, a weakened US economy and increases in non-OPEC production put downward pressure on prices. In response, OPEC once again entered into a series of reductions in member quotas cutting 3.5 million barrels by September 1, 2001. In the absence of the September 11, 2001 terrorist attack, this would have been sufficient to moderate or even reverse the trend.

In the wake of the attack, crude oil prices plummeted. Spot prices for the U.S. benchmark West Texas Intermediate were down 35 percent by the middle of November. Under normal circumstances, a drop in price of this magnitude would have resulted in another round of quota reductions, but given the political climate, OPEC delayed additional cuts until January 2002. It, then, reduced its quota by 1.5 million barrels per day and was joined by several non-OPEC producers including Russia, which promised combined production cuts of an additional 462,500 barrels. This had the desired effect with oil prices moving into the $25 range by March, 2002. By mid-year, the non-OPEC members were restoring their production cuts, but prices continued to rise and U.S. inventories reached a 20-year low later in the year.

By year-end, oversupply was not a problem. Problems in Venezuela led to a strike at PDVSA causing Venezuelan production to plummet. In the wake of the strike, Venezuela was never able to restore capacity to its previous level and is still about 900,000 barrels per day below its peak capacity of 3.5 million barrels per day. OPEC increased quotas by 2.8 million barrels per day in January and February, 2003. On March 19, 2003, just as some Venezuelan production was beginning to return, military action commenced in Iraq. Meanwhile, inventories remained low in the U.S. and other OECD countries. With an improving economy U.S. demand was increasing and Asian demand for crude oil was growing at a rapid pace.

The loss of production capacity in Iraq and Venezuela combined with increased OPEC production to meet growing international demand led to the erosion of excess oil production capacity. In mid 2002, there was over 6 million barrels per day of excess production capacity and by mid-2003, the excess was below 2 million. During much of 2004 and 2005, the spare capacity to produce oil was under a million barrels per day. A million barrels per day is not enough spare capacity to cover an interruption of supply from most OPEC producers.

In a world that consumes over 80 million barrels per day of petroleum products, that added a significant risk premium to crude oil price, are largely responsible for prices in excess of $40-$50 per barrel.

Other major factors contributing to the current level of prices include a weak dollar, the continued rapid growth in Asian economies and their petroleum consumption. The 2005 hurricanes and U.S. refinery problems associated with the conversion from MTBE as an additive to ethanol have contributed to higher prices.

One of the most important factors supporting a high price is the level of petroleum inventories in the U.S. and other consuming countries. Until spare capacity became an issue, inventory levels provided an excellent tool for
short-term price forecasts. Although not-well-publicized OPEC has, for several years, depended on a policy, that amounts to world inventory management, its primary reason for cutting back on production in November, 2006 and again in February, 2007 was the concern about growing OECD inventories. Their focus is on total petroleum inventories including crude oil and petroleum products, which are a better indicator of prices that oil inventories alone [13].

Changing Trends of OPEC Basket Crude and Oil Product Prices between 2002-2007: The prices of the OPEC basket of crude oil are assembling in Tables 1-6. The rise in oil prices was precipitated by several factors, namely, the closure of a refinery in the US and forecasts of increasingly colder weather. Prices were also pressured by reports of an explosion at a Venezuelan refinery, which sparked fears of gasoline supply disruption to the US market since that country is the primary source of imported gasoline in the US.

The Rise in Oil Prices Was Precipitated by the Following Factors:

- Fears of supply shortages emanating from the Middle East which remains engulfed by a high degree of political uncertainty.
- Acts of sabotage hampering the shipment of Iraqi crude oil.

Table 2 shows the change in the price of the OPEC basket of crudes as well as month-on-month price comparisons to levels prevailing in

Due to the recent slow down in demand, particularly in the USA, the crude oil market has lost part of its strength. However prices of oil remained at high levels primarily due to insecurity about future supply and a tight products market. Table 3 show the change in the price of the OPEC basket of crudes as well as month-on-month price comparisons to levels prevailing in 2004-2005.

<table>
<thead>
<tr>
<th>Table 1: Change in the price of the OPEC Basket of Crudes, 2002-2003($/bbl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nov-2002</td>
</tr>
<tr>
<td>Monthly Change</td>
</tr>
<tr>
<td>Month-on-Month From The Previous Year</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 2: Change in the price of the OPEC Basket of Crudes, 2003</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan-2003</td>
</tr>
<tr>
<td>Monthly Change</td>
</tr>
<tr>
<td>Month-on-Month From The Previous Year</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 3: Change in the price of the OPEC Basket of Crudes, 2004-2005</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oct 2004</td>
</tr>
<tr>
<td>Monthly Change</td>
</tr>
<tr>
<td>Month-on-Month From The Previous Year</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 4: Change in the price of the OPEC Basket of Crudes, 2005-2006</th>
</tr>
</thead>
<tbody>
<tr>
<td>April-2005</td>
</tr>
<tr>
<td>Monthly Change</td>
</tr>
<tr>
<td>Month-on-Month From The Previous Year</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 5: Change in the price of the OPEC Basket of Crudes, 2006-2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aug 2006</td>
</tr>
<tr>
<td>Monthly Change</td>
</tr>
<tr>
<td>Month-on-Month From The Previous Year</td>
</tr>
</tbody>
</table>

1364
Table 6: Change in the price of the OPEC Basket of Crudes, 2006-2007

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Nov 2006</td>
<td>0.4</td>
<td>2.5</td>
<td>-7.2</td>
<td>3.8</td>
<td>4.0</td>
<td>4.9</td>
<td>1.0</td>
<td>2.4</td>
<td>5.0</td>
<td>-3.2</td>
<td>5.5</td>
<td>5.1</td>
<td>9.6</td>
</tr>
</tbody>
</table>

The 134th (Extraordinary) Meeting of the Conference of OPEC held on January 30, 2005, suspended the Price Band mechanism, pending completion of further studies on the subject. The monthly average price of the OPEC basket in April rose by 11.2% or $6.5/bbl. from the previous year with 29.8% or $14.8/bbl. higher than a year ago when the OPEC basket was still comprised of seven crudes.

Oil prices rose due to tensions caused by the ongoing debate over Iran’s (OPEC’s second largest producer) nuclear program, despite its assurances that it had no plans to reduce its output. Fears regarding the reliability of Nigerian supplies also contributed to market sentiment.

Monthly Oil Price Decline Is Attributed Mainly to Several Factors Including:

- Prediction indicating that hurricane Dean will not hit main oil and gas facilities in Gulf of Mexico.
- Resumption of some US refineries to operate in full capacity after a three week stoppage, especially at the end of US summer holidays was at sight.
- Announcements made prior to OPEC ordinary meeting convened in September 11, 2007 indicating a probable increase in production.

The 134th (Extraordinary) Meeting of the Conference of OPEC held on January 30, 2005, suspended the Price Band mechanism, pending completion of further studies on the subject. The monthly average price of the OPEC basket in April rose by 11.2% or $6.5/bbl. from the previous year with 29.8% or $14.8/bbl. higher than a year ago when the OPEC basket was still comprised of seven crudes.

Oil prices rose due to tensions caused by the ongoing debate over Iran’s (OPEC’s second largest producer) nuclear program, despite its assurances that it had no plans to reduce its output. Fears regarding the reliability of Nigerian supplies also contributed to market sentiment.

Monthly Oil Price Decline Is Attributed Mainly to Several Factors Including:

- Prediction indicating that hurricane Dean will not hit main oil and gas facilities in Gulf of Mexico.
- Resumption of some US refineries to operate in full capacity after a three week stoppage, especially at the end of US summer holidays was at sight.
- Announcements made prior to OPEC ordinary meeting convened in September 11, 2007 indicating a probable increase in production.

The Table 6 shows the change in the price of the OPEC basket of crudes as well as month-on-month price comparisons to levels prevailing.

Soft Computing (SC): Soft computing (SC), an innovative approach to constructing computationally intelligent systems, has just come into the limelight. It is now realized that complex real-world problems require intelligent systems that combine knowledge, techniques and methodologies from various sources. These intelligent systems are supposed to possess humanlike expertise within a specific domain, adapt themselves and learn to do better in changing environments and explain how they make decisions or take actions. In confronting real-world computing problems, it is frequently advantageous to use several computing techniques synergistically rather than exclusively, resulting in construction of complementary hybrid intelligent systems. The quintessence of designing intelligent systems of this kind is neuro-fuzzy computing: neural networks that recognize patterns and adapt themselves to cope with changing environments; fuzzy inference systems that incorporate human knowledge and perform inference and decision making. The integration of these two complementary approaches, together with certain derivative-free optimization techniques, results in a novel discipline called Neuro-fuzzy and soft computing.

As a prelude, we shall provide a bird's-eye view of relevant intelligent system approaches, along with bits of their history and discuss the features of Neuro-fuzzy and soft computing [14].

Soft computing is an emerging approach to computing which parallels the remarkable ability of the human mind to reason and learn in an environment of uncertainty and imprecision [15].

Artificial Neural Network (ANN): Neural networks are adaptive networks which are composed of simple elements operating in parallel. These elements are inspired by biological nervous systems. As in nature, the network function is determined largely by the connections between elements. Commonly, neural networks are adjusted or trained so that a particular input leads to specific target output (Figure 1).
Fig. 1: Neural Network Structure for Price Prediction in Four Cases

Neural networks have been trained to perform complex functions in various fields of applications including pattern recognition, identification, classification, speech and vision and control systems. When the inputs of the network and target outputs are given, back-propagation gradient descent method is used. Because there is no initial knowledge about connection weights and biases, these parameters should be determined by minimization of error method to feed-forward networks. After their determination, errors are distributed between layers towards backward direction [16]. There are a lot of methods of back-propagation, some of them work slowly, but some new methods are faster than the gradient descent method [17, 18]. ANN is a powerful tool in the hand of petroleum engineers for proper and professional management of hydrocarbon assets due to its following capabilities:

- ANNs are data-driven models that do not require a priori knowledge of data to which it will be applied.
- ANN is able to recognize hidden and unknown non-linear relationship that exists among input-output data. This is particularly suitable for heterogeneous situations, which are commonly encountered in oil and gas reservoirs.
- ANNs are able to process data fast and also provide easy means of applying an already-built model to a new system [19].

Collection of Data: The study has been based on secondary data, mostly in the form of published annual reports of companies. All the information published in business reports include:

- Balance sheets and “supply and demand” of production of crude oil.
- Schedules related to production of crude oil.
- Volume of products of refineries.
- Stocks (of Strategic Petroleum Reserves).
- Crude Oil Stocks.
- Stocks (of Commercial Petroleum Reserves).
- Oil price (especially Brent, West Texas Intermediate, OPEC basket, Saudi Arabia Light spot).
- Consumption of crude oil worldwide.
- Consumption of oil products worldwide.
- Consumption of OECD crude oil.
- Consumption of OECD oil products.
- Consumption of OPEC crude oil.
- Consumption of the U.S crude oil.
- Consumption of the U.S oil products.
- Consumption of the European Countries crude oil.
- Production of the oil products of the U.S.
- Production of the oil products of the OECD.

These have been taken into consideration while doing the research. Since the periods of study include Annual Reports of 2002 till 2007, it was not possible to collect all data at once and at one place only. Some parts of data have been collected from OPEC, OAPEC and Institute of Iranian Energy studying bulletin.

Some old annual reports have been collected from the libraries of the N.I.O.C (National Iranian Oil Company), EIA (Energy Information Administration) and B P (British petroleum).

To collect the data from the remaining strategic and commercial OIL RESERVES, the researcher addressed direct letters to Institute of Iranian Energy studies (IIES) to supply the annual reports in order to collect the latest annual reports of a few SPRand CPR. Also, I have requested the libraries of (N.I.O.C) and institute of energy studies. The researcher has visited OPEC affairs office in Tehran. Whatever latest annual reports still remained to be collected was obtained from related sites such as BP. Com, OPEC.com, EIA.com, Gas Defrance, Com, Rohr Gas.com, lea.com and Platts.com.

However, all data needed for the study were collected for SPRand CPR after hard trying for one and a half years. In order to recognize population under study in all reports, historical data of SPRand CPR have been collected from all the above-mentioned sources apart from NYMEX, IPE Singapore Stock Exchang, OPEC and OAPEC reports.

Price Prediction Based on Artificial Neural Network

One case was considered to predict price as output according to the inputs that are available. The input set used to model the case considered, includes:

- Supply • Z SPR • Z CPR(-1) • LD Z CMR(-1)

The purpose of this section is to develop a neural network model that can be used to predict price values for the case. Since these inputs are available in the field, idea of finding relation between price and input data passes the mind.
In this study, it should be noted that data file for the case include 72 data that are divided into three subsets randomly; 80% was used for training (58 data), 10% for validation (7 data) and 10% for testing (7 data).

Network Design: The appropriate architecture for building the network among the available networks is usually chosen based on the type of the data and the problem. A back-propagation network has been chosen because of its high capabilities to generalize well in problems plagued with significant heterogeneity and nonlinearity. The features of the network are presented in Table 7.

Table 7: Network Design for Price Prediction

<table>
<thead>
<tr>
<th>Training Algorithm</th>
<th>Back-Propagation, Levenberg-Marquardt (TRAINLM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance Function</td>
<td>MSE</td>
</tr>
<tr>
<td>Number of Layers</td>
<td>2</td>
</tr>
<tr>
<td>Neurons for Input Layer</td>
<td>10</td>
</tr>
<tr>
<td>Activation Function</td>
<td>TANSIG (Tan-sigmoid)</td>
</tr>
</tbody>
</table>

Table 8: Results of Networks for Cases in Price Prediction

<table>
<thead>
<tr>
<th></th>
<th>Train</th>
<th>Validation</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSE</td>
<td>R</td>
<td>MSE</td>
<td>R</td>
</tr>
<tr>
<td>Case-1</td>
<td>0.003</td>
<td>0.99</td>
<td>0.007</td>
</tr>
</tbody>
</table>

According to two parameters of error analysis as correlation coefficient (R value) and mean square error (MSE as Performance), the results of models are expressed in the Table 8 and the black row is selected as the best network R value for training, validating and testing data and performance (MSE) for the black row shown in Figure 2. As seen in Table 8 and Figure 2, network modeled price with good accuracy respect to R value and mean squared error.

Model summary table reports the strength of the relationship between the oil price (as a dependent variable) and Supply of worldwide Crude Oil, ZSPR (worldwide Strategic Petroleum Reserves), ZCPR (-1), Previous Period of Commercial Petroleum Reserves, LD (The value of demand for Light distillates) and ZCMR(-1) (worldwide previous period of Commercial petroleum products Reserves) as the independent variables; According to two parameters of error analysis as correlation coefficient (R value) and mean square error (MSE as performance), the result of model is expressed in the table 2 and R value for training, validate and test data and performance 0.99 for train 0.99 for validation (MSE) for case are shown in Figure 2. As Seen in Table 2 and Figure 2 network modeled to predict price with good accuracy respect and
R 0.99 for test indicate the strong and significant relationship between the oil prices and input data passes the mind.

CONCLUSIONS

Based on the results of this paper, the following conclusions were obtained:

- Soft Computing models, which result in the lowest error and based on actual field data, are strongly proposed to solve intricate industrial problems instead of empirical correlations and mechanistic models.
- Generally soft computing methods model prices with good accuracy.
- Application of genetic algorithm in conjunction with Artificial Neural Network may cause better results to be obtained.
- More field data can be used to model in applicability of Soft Computing models.
- New input-data without error can improve the price prediction significantly.
- Model summary table reports the strength of the relationship between the oil price (as a dependent variable) and Supply of worldwide Crude Oil.

For stabilization of the international oil prices, cooperation is necessary between Industrial consumer countries and producing countries (especially OPEC) towards production, storing and consumption [20].

The US holds the largest crude oil reserves and its derivatives in the world; this subject is considerable due to the share this country has in crude oil exploration in the world. Thus, it is necessarily that the US adjusts its role in the oil market as a largest consumer and a vital producer of crude oil and its products in the world. The study covers all strategic and commercial oil reserves in major consumption areas and countries which are included in oil Merchant Exchange and countries.

REFERENCES

9. Details and current levels of SPR inventory are updated regularly at [http://www2.spr.doe.gov/DIRISilverStreamlPages/pg Daily Inventory Report View DOE_new.html]
15. Jyh-Shing, R.J., 1997. Neuro-Fuzzy and Soft Computing" Computer Science Department, Tsing Hua University, Taiwan, MathWorks, Natick, Massachusetts, USA,

