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Abstract: The notion of R-valued ideals of an ordered hemiring is considered and some of its properties are given,
where R is a commutative multiplicative idempotent bounded CLO-hemiring in which multiplication distributes over
arbitrary joins. It is shown that the set of all R-valued ideals of a positive ordered hemiring forms an additively idempotent

bounded CLO-hemiring and that some ordered hemirings can be embedded in it.
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INTRODUCTION

Given a non-empty set X, a fuzzy subset of X, by
definition, is an arbitrary mapping f : X — R where
R is the unit segment [0, 1] of the real line. If the set
X bears some structure, one may distinguish some fuzzy
subsets of X in terms of that additional structure. This
important concept of a fuzzy set was first introduced by
Zadeh [1] in his ground-breaking work, which enlarged
the concept of a crisp subset. The theory of fuzzy sets has
provided a useful mathematical tool for describing the
behavior of systems that are too complex or ill-defined to
admit precise mathematical analysis by classical meth-
ods and tools. Since then, many papers on fuzzy sets
appeared showing the importance of the concept and its
applications to artificial intelligence, computer science,
control engineering, expert systems, management sci-
ence, operations research, logic, set theory, group the-
ory, groupoids, real analysis, measure theory, topology,
and others. Many notions of mathematics are extended
to such sets, and various properties of these notions in
the context of fuzzy sets are established. In recent years,
there has been considerable interest in the connections

between fuzzy sets and algebraic structures theory. The
readers are referred to [2-16].

In the original conception given in Zadeh [1], the
unit interval [0, 1] was equipped with the operations V
(maximum) and A (minimum). An important extension
of this situation, however, was realized when the latter
was replaced by an arbitrary triangular norm in the sense
of Menger [17], namely an associative operation * on
[0, 1] satisfying the condition that ([0, 1], V/, *) is a semir-
ing. Similarly, we have the notion of a triangular conorm
on [0, 1] satisfying the condition that ([0, 1], A,x) is a
semiring. In [18], Menger interpreted triangular norms
in the context of continuum physics as rules for generat-
ing new probabilistically-determined objects from exist-
ing ones in the psychophysical continuum space. In [19],
Butnariu and Klement used triangular norms for interac-
tion rules for economic agents in fuzzy games.

Goguen [20] extended Zadeh’s construction by re-
placing unit interval with an arbitrary bounded distribu-
tive lattice, a lead which has been followed by many oth-
ers (see [21,22]). One may note that any bounded dis-
tributive lattice (R,V,A) is a commutative multiplica-
tively idempotent bounded lattice-ordered semiring in
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which multiplication distributes over arbitrary joins if we
takex+y=zVyandzx-y=zAyforallz,y € R.

This paper investigates ideal theory of an ordered
hemiring in a broader framework of the R-valued func-
tion, where R is a commutative multiplicatively idempo-
tent bounded CLO-semiring in which multiplication dis-
tributes over arbitrary joins. It shows that the set of all
R-valued ideals of a positive ordered hemiring forms an
additively idempotent bounded CLO-hemiring and that
some ordered hemirings can be embedded in it.

PRELIMINARIES

In this section, we summarize some basic concepts (see
[23-26]) which will be used throughout the paper.
A semiring is an algebraic system (R, -+, -) consisting of
a non-empty set R together with two binary operations
on R called addition and multiplication (denoted in the
usual manner) satisfying the following conditions:

(1) (R,+) is a commutative monoid with identity ele-
ment Op;

(2) (R,-)is amonoid with identity element 1g;

(3) Multiplication distributes over addition from either
side;

4) O -x =0gr =x-0gforallz € R;

(5) Or # 1R.

If we do not have a multiplicative identity 1p, then

the structure is called a hemiring. R is commutative
if (R,-) is commutative. A semiring (resp., hemiring)
(R, +, ) is called additively idempotent if x + x = x for
all x € R, and multiplicatively idempotent if x - v = ©
for all # € R. For the sake of simplicity, we shall omit
the symbol “ -7, writing zy for z - y (z,y € R).
A semiring (resp., hemiring) (R, +,-) is called an or-
dered semiring (resp., hemiring) if and only if there ex-
ists a partial relation “ < ” on R satisfying the following
conditions for elements z, y and 2 of R:

) ifz<ythenz+ 2z <y+ z;
(2) ifx <yand z > 0p then zz < yz and zz < zy.

In particular, an ordered semiring (resp., hemiring) is
called a totally ordered semiring (resp., hemiring) if
(R, <) is a totally ordered set. And an ordered semir-
ing (resp., hemiring) is called positive if x > Qg for all
r € R.
A semiring (resp., hemiring) (R, +,-) is a complete-
lattice-order semiring (resp., hemiring), denoted as
CLO-semiring (resp. CLO-hemiring), if and only if R
has the structure of a complete lattice satisfying the con-
ditions that z+y = xVyand zy < zAyforall z,y € R.
Note that if the lattice structure of a CLO-semiring
R is bounded, then the maximal element and minimal el-
ement must be 1 and Oy, respectively.

Let (T, ®,®, <) and (R, +, -, <) be ordered hemirings,
f T — R amapping from T into R. f is called iso-
tone if x,y € T,x =< y implies f(z) < f(y). fis
said to be inverse isotone if x,y € T, f(z) < f(y) im-
plies x < y (each inverse isotone mapping is (1-1)). f
is called a homomorphism if it is isotone and satisfies
flzoy) = f(x)+ f(y) and f(z © y) = f(x)f(y) for
all z,y € T. A homomorphism is called an isomorphism
if it is surjective and inverse isotone 7" and R are called
isomorphic if there exists an isomorphism between them.
T is embedded in R if T is isomorphic to a subset of R,
i.e., if there exists a mapping f : T — R which is homo-
morphism and inverse isotone.

In the sequel, unless otherwise stated, (T, @, ®, <)
and (R, +, -, <) denote a positive ordered hemiring and a
commutative multiplicatively idempotent bounded CLO-
semiring in which multiplication distributes over arbi-
trary joins, respectively.

A non-empty subset A of T is called an ideal of T if
it satisfies the following conditions:

(1) AACA;
2) TOAUAOGT C A,
@B)ifrecAandT >y 2 xtheny € A.

For A C T, we denote
(Al ={x € T|z < yforsomey € A}.

Note that condition (3) is equivalent to the condition
(A] = A. Letz € T. It is obvious that I(z) = (Nz &
TOz®d2x0T®T 2 T],where N ={0,1,2,---},
is the principal ideal of 1" generated by z. In particular,
I(z) = (Nz® T © «] if T is commutative.

Denote by R the set of all functions from 7" into R.
For any A C R, the characteristic function of A, denoted
by x ,. is defined by

. 1g ifz € A,
Xa (@) = { 0r otherwise

for all z € R. A function f € R of the form

_ r ify ==z,
fly) = { 0p  otherwise

is said to be a R-valued point with support x and value r
and is denoted by ., where r € R\{Or}.

For f,g € RT, the intersection of f and g, denoted
by f Ng,is defined by (f Ng)(x) = f(z) A g(z) for all
zeT.

R-VALUED IDEALS OF AN ORDERED
HEMIRING

Let f,g € RT. We introduce the sum, product and in-
trinsic product of f and g as follows.
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Definition 1. Let f,g € R”. The sum, product, and
intrinsic product of f and g, denoted by fH g, f[Jg and
f{()g, are defined by: Vo € T

(fBg@) = \/ @9
y,z€T, zydz
T\/ flyg(z) if3y,zeR
y,2€T, x=xyOz
(fHg)(z) = suchthatx <y © z,
0Or otherwise.
and
(f{E)g)(z)
I flyi)g(zi)  ifFyi,z €T
szl’il Yi©Oz;
= such that
TXY1021 D DYm © 2m,
Ogr otherwise.

Define an order relation “ C ” on R” by: Vf,g €
RT
fCge f(z) <g(z)forallz € T.
Lemma 2. Let f,g,h € RT. Then

() (fHg)Oh = fO(gEh)and (f{L)g){)h =
FE)(g(E)h).

(2) (fEHg)Bh=fH(gHM).

(3) fEgC f(E)g.

(4) OTIR H f = f = f H OTIR and OTIR <E|>f =
OTlﬂ = f<E\>OT1R = f

(5) fHg = gBf. If T is commutative, then f[1g =

gl f.

Proof. We only show (f[1g)[dh = fLI(gllh). The
other properties can be similarly proved. If there does not
exist y,z € Rsuchthat z < y © 2z, then

((f B g) D) (@) = 0 = (f B (g 1 ) (a).
Otherwise, we have
((fDg) L h)(z)
= \/ (D9 wh(z)

z2YOz

V ( V f(U)g(v)h(Z)>
=yoz \y=uew

= v € T such that

if there exist u,

y2ulOw,
Or otherwise.
\V  f(u)g(v)h(z) if there existu,v,z € T
B r=uPvOz
- suchthatx <u v © z,
Ogr otherwise.
=(fH(gh))(z).

It follows (fHg) D h=fH(gEhR). O

Lemma 3. Let f, g, h € RT. Then
(1) fE(g8h) C fOgH flhand (gBA)H f C
g fEAEf.
(2) f[E)(gBR) S f(ED)g B f(E)h and (9 B
h){E)f € g(E) f B f.
Proof. We only show (1). (2) can be similarly

proved. Let x € T. If there does not exist y,z € R
such that x < y © z, then

(f B (gBh)(z) =0r < (FEgH fLTR)(2).

Otherwise, we have
(fE(gBh)(x)
=V fwBh)(z)

YOz

\ ( V f(y)g(u)h(v))
zXyOz \ z23udv
Vo (F@gw)(f()hw))

z2XYyQubyOv

V (FE9wouw(fdg)(yowv)

z2YyOudyOv

\/ (FEh)(a)(gDh)(b)
r=adDb
(fD g fEh)(a).

It follows f [ (gHBh) C fEgB f D h. In a similar way
we may prove that (BB R) D f C g fBAE f. O

Lemma 4. Let f, g, h € RT be such that f C g. Then

(1) fBRC gHEh.
(2) fURCghand R f Chldg.
(3) f{E)h € g{L)h and h{L) f C h{L)g.

Proof. We only show (1). (2) and (3) can be simi-
larly proved. Let x € T'. Then

(fBER)@) = \/ fwhe)
zXyPz
<V 9h(z) = (gBh)(@).
zyPz
It follows fEHBh C gHAh. O
Next, we introduce the concept of R-valued ideals
of T" as follows.

Definition 5. Let f € RT. fis called an R-valued ideal
of T if it satisfies the following conditions: Vz,y € T'
(Fla) f(0r) = 1p;
(F2a) f(x ®y) = f(2)f(y);
(F3a) f(x ©y) > f(z) + f(y);
(F4a) if x < y then f(z) > f(y).

IN

IA

IN
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Denote by RIT the set of all R-value ideals of 7.

Example 6. Define on the set T' = {0, z,y, 2} a totally
order relation by 0 < # < y < z and an addition opera-
tion “&”, a multiplication operation “® ” by the tables:

®l0 =z y = ©Ol0 z y =
010 = vy =z 010 0O O O
T |z x y =z and z |0 =z =z =z
yly vy 2z =z y |0 =z z =z
z |z z x y z |0 z x =

Then (T, ®,®, <) is a positive totally order hemiring.
Let (R, V, A,0,1) be a complete distribute bounded lat-
tice which is clearly a CLO-semiring if we define r+s =
rVsandrs = r Asforall r;s € R. Define f be the
function from 7" into R as follows:

f0) =1, f(z)=r, f(y) =sand f(z) = s
where 0 < s < r < 1. Then f is an R-valued ideal of T'.

Let f € RT and r € R. Define a set f. = {x €
T|f(x) > r}, called the r-strong cut set of f. Then it
is not difficult to see that the following results are valid,
which present the relationships between crisp ideals and
R-valued ideals of T'.

Theorem 7. Let A C T. Then A is an ideal of T if and
only if x 4 is an R-valued ideal of T

Theorem 8. Let f € RT. Then f is an R-valued ideal
of T if and only if f; (fi # 0) is an ideal of T for all
te R\ {lR}.

Theorem 9. Let f € RIT. Then f is an ideal of T,
where f = {x € T|f(z) = 1r}.

Lemma 10. Let f € RT be such that x = y implies
f(x) > f(y). Then (F2a) holds if and only if the follow-

ing condition holds:

(F2b) fB f = f.

Proof. (F2a)=(F2b) Letx € T. If x =X y & z for
some y,z € T, then f(x) > f(y ® z). Hence

BN =V fl \V fyez)
z=<yPhz z=yDz

\ f)=
r=Xydz

It follows f H f C f.

On the other hand,
(FBEHE@) =\ fW)f) = f@)f0r)=f(2)lr
r=yBz

1811

It follows f C fH f. Hence f B f = f.
(F2b)=(F2a) Let x,y € T'. Then

f@oy) = (fBf)zoy)
= \/ fwfw)

Dy <udv

f(@)f(y)-

A%

Hence (F2a) holds. [J

Lemma 11. Let f € RT be such that x =< y implies
f(x) > f(y). Then (F3a) holds if and only if the follow-
ing condition holds:

(F3b) xr L1 f € fand fLx7 C f.

Proof. The proof is analogous to that of Lemma 7.
O

Lemma 12. Let f,g € RIT. Then f C fH g and
gc fHy

Proof. Let x € T'. Then

(fBg)(x) =\ fly

r=ybdz
It follows f C fHgandtheng C fHg. O

Theorem 13. Let f,g € RIT. Thensoare fBg, f{()g
and f N g.

Proof. We only show that f([1)g is an R-valued
ideal of T'. The cases for fH g and f N g can be similarly
proved.

)] (f{E)9)(0r) =

% [T f(yi)g(zi) > f(0r)g(07) = 1.
OrR=D1N, 4Gz

(2) Let z,y € T. If there does not exist u;,v; € T'

suchthatz R u1 O V1 O D Uupm Qv ory = up ©

v1 B DUy © vy, then
(f(Dg)(@)(f(E)g)(y) = 0r < (f(D)g)(z D y).

Otherwise, we have

(f(D)9)(z & y)

\ [ fw)g(w:)

Oy, u Qv @

> \ [T r@)g®) [T f(es)a(d))
90527;1] az‘@bmyjszl ¢;Od; g J
= \  TIfa)g) Vo T e
Ijz;n:ll a;®b; yﬁE}”j’l c;od; J
=(f{Eg) (=) (f(ED)g)(y)-

) = f(0r)g(x) = 1rg(x) = g().

d;)
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Hence, in any case, we have (f{())g)(x & y) >
(F{E)9) (@) (f(H)g)(y)-

(3) Let z,y € T. If there does not exist u;,v; € T'
suchthatx < u; ©vi @ - D Uy © Uy, then

(F{ENg)(x) = 0r < (f(E)g)(z © y).

Otherwise, we have
(f(E)g)(z ©y)
>V [[fwewoy)

) DR T O T

>\ J[fwogtw) = (FE)g)@).

) DR PO

In a similar way, we may prove that (f(Cl)g)(z © y) >
(f(E)9) ().

@ Letx Xy. Theny Su1 ©Ov1 @ D U © Uy
for some u;,v; € T givesx 2 u1 O vy D+ D Uy, © Uy,
and o (/(F)g)(x) > (/(@)g)(v).

Summing up the above arguments, f(()g € RIT.
O

Lemma 14. Let f,g,h € RIT. Then f{l0)(g B h) =
(g 8 f(Ehand (g B h)(L) f = g(L) f B A{) f.

Proof. We only present a proof for the first equal-
ity. By Lemma 3(2), it remains to show f(()(g B h) 2
F{ENgH f (L) h. Note first that g h O g and gFBR D h,
and so f () (g8 h) 2 f(L)g and f([T)(gBR) 2 f({E)hA
by Lemma 4. In addition, it follows from Theorem 13
that f()(g B h) € RIT. Hence f(Ll)(g M h) =
HE)(gBh)Bf(E)(gBA) 2 f(H)gH f(E)h. There-
fore, f(CI)(g B h) = f()g B f(LHh. O

Theorem 15. (RI” &
hemiring with zero element Or, ..

,(C1)) is an additively idempotent
In addition, if T is
commutative, then so is RIT.

Proof. The desired result follows from the following
facts.

(1) (RI", M) is a commutative idempotent monoid
with identity element O, by Lemmas 2, 10 and Theo-
rem 13.

(2) (RIT,1D) is a semigroup by Lemma 2 and The-
orem 13.

(3) “[J” distributes over “H ” from either side by
Lemma 3.14. O

Lemma 16. Let f,g € RT and h € RIT. Then f[1g C
I if and only if f{C1)g C h.

Proof. It is obvious that f(()g C h implies fHg C
h by Lemma 2. Now assume that f[[1g C h. Letx € T

If there does not exist u;, v; € T such that x < w1 ©v1
D U, © Um» then

(f{ENg)(x) = Or < h(z).

Otherwise, we have

@@=\

L) DHSRTHOLY

[/
< \/ Hng (u; ©v;)
[1n

x<zl L Ui QU

<V

e300 wiOvs
It follows f(Cl)g € h. O

Theorem 17. (RIT, 8, N, C) is a complete bounded lat-
tice with the minimal element Or,  and maximal element
xr- In addition, (g C fﬂgforall f,g € RIT.

Proof. Let f, g € RI”. It follows from Theorem 13
that fAg=fNge RITand fBg € RIT. We now
show that f Vg = fH g. Itis clear that f C fH g and
g C fBg. Now, let g € RI” be such that f C h and
g C h. Then, flHg ChHg C g. Hence fVg= fHg.
This implies that (RIT,8,N, C) is a lattice. And it is
easy to see that RI” is complete and that Or,, and x7

u; ®v;) < h(x).

are the minimal element and maximal element of RIT,
respectively. Next, we show that f{(0)g C f Ng. From
Lemma 11, fldg C fldxrNxrg C fNg. Hence
it follows from Lemma 16 that f{{1)g C fNg. O

From Lemma 4, Theorems 15 and 17, we have the
following result.

Theorem 18. (RI™,8,(0),C,0r, , x7) is an addi-
tively idempotent bounded CLO- hemlrmg

THE EMBEDDING OF SOME ORDERED
HEMIRINGS

Given f € RI T we call the least R-valued ideal of
T, containing f, the R-valued ideal of T generated by
f, denoted by (f). By Theorem 13, the R-valued ideal
(f) of T is actually the intersection ({g € RIT|f C
g}. From Theorems 15 and 17, it is easy to check that

f(E)g=(fQg)forall f,g € R".

Lemma 19. Let x € T and r € R\ {Ogr}. Then ()
is the R-valued ideal generated by x.., where {(x,.) is de-
Jined by

1r ify =0p,
(xe)y) =4 v ify € l(x)\{0r},

Ogr otherwise.

forally €T.
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Proof. It is easy to see that (x,) is an R-valued ideal
of T. Now let f € RIT be such thatz,, C fandy € T.
We show that (z,.) C f. The verification is as follows.

Case 1y ¢ I(z). Then (z;)(y) = O0r < f(y).

Case 2 y = Op. Then f(y) = 1 = (z,)(y).

Case 3 y € I(z)\{Or}. Then there exist m €
{0,1,2,---} and a,b,c,d € T such that y < mz &
a@z@rObOcOrOd, and so

fy) zf@)flao ) flz0b)f(cOoz©d)
>f(@)f(2)f(2)f(2) = f(z)
27“:<95r>(y).

Thus, in any case, we have (x,) C f. This com-
pletes the proof. [J

Lemma 20. Let z,y € T and r € R\{Ogr}.
commutative, then

(1) <5Br> & <yr> = <(:B ® y)'r>'
(2) (@) (E){yr) = ((z © y)r).

Proof. (1) Let z € T. We consider the following
cases.

Case 1. z ¢ I(x@®vy). Then {(x D y),)(z) = O and
a ¢ I(x)orb ¢ I(y) for z < a @ b. Otherwise, if a ¢
I(z) and b ¢ I(y), then there exist m,n € {0,1,---,}
andc,d € T suchthata < mz®cOxand b < nxPHdOx
andsoz R a®b < mrEScOrPnrddOxr =
(m4n)z®(cod)Ow, ie., z € I(xDy), acontradiction.
Hence (z,.)(a) = Og or (y,.)(b) = Og and so

(@) By =\ (@)(a){y)(b) = Or.
z=adb

Then ((z @ y)r)(2) =
V(@) (a)(yr)(b) =

z=<a®b

If T is

Case 2. z = Op.
1g and ((z;) B (yr))(2) =

() (0r) () (07) = 1.

Case3. z € I(x®y)\{Or}. Then ((zPy),)(z) =7
and there exist m € {0,1,---,} and @ € T such that
2 2mxz®y)®ad (zdy) = (MxPa®z) P (Myda®
y). Hence ((z) 8 (y))(2) = 'V (zr)(@){y:)(0) 2

z=a®db
(zr)(mz © a © z)(y,)(my © a@g% = r. It is obvious
that ({x,.) B (y,-))(2) # 1g, otherwise z = Or. Hence
((zr) B (yr))(2) = 7.

Thus, in any case, we have ((x,.) B
y)r)(2). Iefollows (z,) 8 (y,) = ((z D y)r).

(2) Tt is obvious that (z,) () (y,) = (z, O yr) =
(zoy)). O

Theorem 21. If T is a commutative positive totally or-
dered hemiring satisfying the following condition: for
any v,y € T, © # y implies I(x) # I(y), then
(T,®,®, =) is embedded in (RIT, B, (1), Q).

Proof. Let r € R\{Or}. We consider the mapping
@:T — RIT |z~ (z,). Then we have:

(1) The mapping ¢ is well defined. The verification
is as follows. Let z,y1,y2 € T be such that y; = ya.
Then

1gr ify1 = Or,
W)y2) =q r ify € I(@)\{0r},
0Or otherwise.

{zr)(y1) = (&

Let x1,z2,y € T be such that x; = z5. Then

1p ify = Or,

(w17)(y) = (@2r)(y) = ¢ 7 ify € I[(x1)\{Or},
0Or otherwise.

(2) ¢ is a homomorphism. The verification is as fol-
lows.

(a) ¢ is isotone. Let z,y € T be such that x <X y.
For any z € T, we consider the following cases.

Case 1. z = Op. Then (z,)(z) = 1g = (y,)(2).

Case 2. z ¢ I(z). Then (z,)(z) = O0r < (yr)(2).

Case 3. z € I(z)\{Or}. Then there exist m €
{0,1,2,---}anda € T'suchthat z < mz Pa O x =
my ® a©y,and so (x,)(z) =r = (y,)(2).

Thus, in any case, we have (z,) C (y..), i.e., o(x) C
e(y).

() oz ®y) = ¢(z) B py) and p(z © y) =
©(2){E)(y). This is straightforward from Lemma 20.

(3)¢ is reverse isotone. Let x,y € T be such that
o(z) C p(y),1e., (x,) C (y,). Suppose if possible, z A
y, then x > y since < is a totally order on 7'. Analogous
to the proof of (a), we have p(x) D ¢(y) since I(x) #
I(y), a contradiction. Hence x < y. [

Example 22. Define on the set ' = {0,z,y} a totally
ordered relation by 0 < 2 < y, and an addition operation
“@” and a multiplication operation “ ® ” by the tables:

and

Then (T,®,®, =) is commutative positive totally or-
dered hemiring satisfying the following condition: for
any a,b € T, a # bimplies I(a) # I(b) and can be em-
bedded a commutative additively idempotent bounded
CLO-hemiring.

CONCLUSIONS

In this paper, we introduced the concept of an R-valued
ideal of an ordered hemiring and provided some of its
properties. We further showed that the set of all R-valued
ideals of a positive ordered hemiring forms an additively
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idempotent bounded CLO-hemiring and that some or-
dered hemirings can be embedded in it. Our future work
on this topic will focus on studying other R-valued ideals
of hemirings (semirings) such as R-valued k-ideals and
R-valued h-ideals, and applying the results to the other
algebraic structures.
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