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Abstract: In this paper, we introduce a new multimode project scheduling problem, taking into account 
finish-to-start precedence relations among project activities as well as renewable and nonrenewable
resources constraints. We suppose renewable resources are hired and not accessible in all time intervals of a 
project. In other words, there is a presumed release date as well as a mandated due date for each renewable 
resource type such that no resource can be available before its release date. However the resources are
allowed to be executed later than their due dates by remitting penalty costs based on the resource type. The 
objective is to minimize the entire costs of renewable and nonrenewable resources, called multi-mode
resource-constrained project scheduling problem, minimization of total weighted resource tardiness penalty 
cost (MRCPSP-TWRTPC) where nonrenewable resource costs depend on the activity modes. In this paper, 
we present a branch and bound algorithm to deal with this extended type of MRCPSP. A numerical
example is presented to describe our branch and bound approach in more details. Experimental results 
reveal the capability of the proposed algorithm in solving the problem in question particularly for the small 
and medium sized test functions.
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INTRODUCTION

In practice, the project activities can be performed 
in multiple possible execution modes. This yields
fascinating project scheduling problem commonly
known as the multi-mode resource-constrained project 
scheduling problem (MRCPSP). MRCPSP selects an 
execution mode for each project activity and determines 
the activity start and finish times subject to precedence 
constraints as well as renewable and nonrenewable
resources restrictions in order to minimize the project 
duration. In this paper, we introduce an extended form 
of MRCPSP by considering renewable resources are 
rented and not available in all periods of time of a 
project. In other words, there is a mandated release date 
as well as a due date for each renewable resource type 
such that no resource can be obtainable before its 
release date. However the resources are permitted to be 
used later than their due dates by paying penalty costs 
based on the resource type. The objective is the
minimization of the entire costs of both renewable and 
nonrenewable resources, called multi-mode resource-
constrained project scheduling problem, minimization 
of total weighted resource tardiness penalty cost
(MRCPSP-TWRTPC) where nonrenewable resource
costs depend on the activity modes. 

Considerable number of exact and heuristic
methods has been presented in the literature of the 
MRCPSP problem. A comprehensive review on these 
publications can be found in Chapter 8 of Project
Scheduling Handbook [3] and a survey done by
Weglarz et al. [15].

In this paper, another project scheduling problem 
with the objective of resources costs minimization is 
taken into consideration. We try to study an extended 
and more practical model by considering the costs of 
both renewable and nonrenewable resources. The cost 
of nonrenewable resources is a function of their
requirements determined by activities modes. Also,
renewable resources are available in pre-determined
time periods specified by their release times and due 
dates. No renewable resources can be available before 
their release times however using these resources after 
their due dates will yield penalty costs. This is
motivated by the case renewable resources are rented 
for specified periods that using them after those periods 
causes tardiness penalty cost. As the renting cost is 
fixed for the periods, there is no need to enter it in 
objective function and only tardiness penalty cost can 
be considered for these resources.

Resources tardiness has been only examined by 
Ranjbar et al. [13] taking into account unary renewable 
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resources. However, they only considered renewable 
resources and single mode activities. This problem
called resource-constrained project scheduling problem, 
minimization of total weighted resource tardiness
penalty cost (RCPSP-TWRTPC), was introduced as an 
extension of resource-constrained project scheduling 
problem (RCPSP). They developed an exact algorithm 
based on branch and bound approach to deal with this 
problem.

Therefore, our proposed problem is a
generalization of the problem presented by Ranjbar et
al. [13] with more realistic viewpoint of resources
costs. We call this problem multi-mode resource-
constrained project scheduling problem, minimization 
of total weighted resource tardiness penalty cost
(MRCPSP-TWRTPC).

The problem described here is an extension of the 
RCPSP problem and considering the NP-hardness of 
RCPSP ([1, 2], the MRCPSP-TWRTPC problem is NP-
hard as well. Among several exact and non-exact
algorithms presented in the literature for solving
MRCPSP we can point to branch and cut method 
proposed by Heilmann [5] and branch and bound
method developed by Zhu et al. [16] as two of the most 
powerful exact methods. Also Lova et al. [8] proposed 
priority rules and mode selection rules to solve
MRCPSP. Moreover, Genetic Algorithms suggested by 
Lova et al. [9] and Peteghem and Vanhoucke [10] and 
Scatter Search algorithm developed by Ranjbar et al.
[12] can be mentioned as some of the most efficient 
meta-heuristic methods.

The rest of this paper is organized as the following. 
In the next section, MRCPSP-TWRTPC is described 
and mathematically formulated for the very first time. 
In section 3, our proposed branch and bound algorithm 
is presented. Section 4 is dedicated to an illustrative 
example to explain further our blanch-and-bound
approach. The computational analyses are given in 
section 5. Finally, we conclude the paper in section 6. 

PROBLEM MODELING AND FORMULATION

MRCPSP-TWRTPC is the generalization of
MRCPSP, but instead of minimizing project duration, 
project cost minimization is aimed. We describe this 
problem in details in the following.

The objective of MRCPSP-TWRTPC is to find a 
feasible schedule in order to minimize the total costs of 
a project. Each project activity can have several
execution modes in which renewable and nonrenewable 
resource requirements and its duration are stated as a 
discrete amount of unit measure. The availabilities of 
renewable resources are limited and their release times, 
deadlines  and  tardiness penalty costs are specified. All 

activities are ready at the beginning of the project, no 
preemption is permitted during activities executions and 
there are finish-to-start precedence relations among 
activities.

In order to mathematically formulate this problem, 
we consider an activity on node (AON) representation 
with finish-to-start precedence relations and zero time 
lag. Dummy activities 1 and n correspond to start and 
completion of the project. The list of activities is 
topologically numbered, i.e., each predecessor of every 
activity has a smaller number than the number of
activity itself. 

Also we define the earliest and latest start time of 
each activity, ESTj and LSTj, with forward and
backward passes using the mode with shortest duration 
for each activity and assigning LSTn= LFTn=T where T 
is a upper bound for project duration determined by any 
valid method, such as the simple method of summation 
of the longest duration of entire project activities plus 
the lates t ready time of the renewable resources. So 
each activity j can only be performed in time period 
[ESTj,LSTj].

We define problem parameters as the following:

n: Number of project activities
NR: Number of nonrenewable resources
ck: Unit cost of nonrenewable resource k
R: Number of renewable resources
Rk: Renewable resource k availability
rk: Release time of renewable resource k
dk: Due date of renewable resource k
pk: Tardiness penalty cost of renewable resource k 

for each period
Mj: Number of modes of activity j 
Pj: The set of the predecessors of activity j 
djm: Duration of activity j under mode m
rjmk : Renewable resource k requirement for executing 

activity j under mode m
njmk: Nonrenewable resource k requirement for

executing activity j under mode m
ESTj: Earliest start time of activity j 
LSTj: Latest start time of activity j
T: Project duration upper bound

We also define the decision variables as the
following:

lk: Renewable  resource k  tardiness  determined  by: 
lk = max{0, CPk-dk} where CPk is the release time 
of resource k by the project.
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The mixed integer programming model for this
problem can be formulated as follows: 

(1)
S.t.

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

In model above, objective function (1) is project 
cost  minimization  in  which  the  first  and  second 
terms are total cost of using nonrenewable resources 
and  total  penalty  cost  of  renewable  resources 
tardiness  respectively.  Model  contains  5 functional 
and 3 non-functional constraint sets described as the 
following.  Constraint  set  (2)  ensures  that each 
activity j is started under one of its modes in its 
specified start time period, i.e. [ESTj,LSTj]. Constraint 
set (3) forces precedence relationship between
activities. Constrains (4) regard renewable resources 
usage limitations. According to constraints (5),
renewable  resources cannot  be  used  before  their 
release times and their tardiness are determined by 
constraints (6). Finally, constraint sets (7), (8) and (9) 
are non-functional ones.

OUR BRANCH AND BOUND ALGORITHM

Sprecher et al. [14] introduced several
preprocessing rules in order to reduce feasible space of 
MRCPSP. Later, these rules have been used in other 
articles such as Hartmann and Briskon [4], Lova et al.
[9] and  Peteghem  and  Vanhouck  [10]. Considering 
the similarities between MRCPSP-TWRTPC and
MRCPSP, we apply two of these rules to our proposed 
problem. One is the non-executable mode elimination
rule for an activity. For a non-executable mode, the 
amount of the resource needed for executing the
activity is more than the resource availability. Another 
method is inefficient mode elimination method. A given 
mode is inefficient for an activity if there is another 
mode for which the activity duration is less and that 
activity can be accomplished with less total amount of 
both renewable and nonrenewable resources. Therefore, 
activities modes are analyzed one by one and non-
executable and inefficient modes are deleted.

The idea of developed branch and bound algorithm 
for the problem is based on the generation of feasible 
activity list which adds activities to the schedule until a 
feasible accomplished schedule is generated. At each 
iteration the next activity in the priority list is chosen 
and the first possible starting time is assigned for that 
activity such that no precedence constraint is violated. 

A partial activity list (AL) is completed along the 
branching tree. In each step, one activity is chosen for 
the AL from the set of available activities that have not 
been selected yet, but their predecessors have all been. 
The selected activity is placed at the end of current 
partial AL. As activities are considered as multiple
modes in our problem, having selected each activity i
for a partial AL, we add mi nodes to the branching tree 
where mi is the number of possible modes in which 
activity i can be accomplished. So in each generated 
node, activity i is executed under the related assigned 
mode and in this way, mode assignment is completed 
along with AL generation. 

A lower bound for the related cost of each node is 
determined as follows. The related costs of
nonrenewable resources are calculated for activities 
which their modes have been assigned and for the rest 
of activities, modes with the least related cost of
nonrenewable resources are chosen and in this way a 
lower bound for the total cost of nonrenewable
resources is determined. Regarding to the related costs 
of renewable resources, the minimum tardiness is to be 
determined for each resource and a schedule is
generated based on the current partial AL and mode 
assignment. We generate a schedule to get a lower
bound for resource tardiness so that the finish times of 
all  activities  are  earlier  or  equal  to any final feasible
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1. Do preprocessing
2. Generate the initial node with the first dummy activity and select it for branching
3. Branch and fathom the selected node 
4. Fathom and assess each new node that contains all activities and update current upper bound if necessary
5. If upper bound was updated in step 4:

a. Check for fathoming all nodes that are not fathomed yet 
Else:

b. Check for fathoming new nodes generated by last branching
6. If all nodes are fathomed:

a. Report the best feasible solution achieved and stop
Else:

a. Choose a node for branching from the set of open nodes
b. Continue from step 3

Fig. 1: The Pseudo-code of the Branch and bound algorithm

schedule. So we determine the finish times of activities 
as follows. 

For  activities  present  in  current  partial  AL 
whose modes have been assigned, we use serial
schedule generation for scheduling them and
determining  their  start  and  finish  times. As activity 
lists are generated under precedence feasible condition, 
it is possible to transform a partial AL to a feasible 
schedule.

For activities not listed in AL, we use forward pass 
method to determine earliest possible start times and 
finish times. We briefly describe our proposed steps as 
follows:

• We first determine the earliest start time of activity 
in the way that an activity cannot start earlier than 
the earliest finish time of all of its predecessors.

• In the second step, we determine earliest start time 
of the activity under each of its modes as the
following: According to the usage of renewable 
resources for each activity, a lower bound on the 
start time and finish time of activity is achievable. 
For each activity, the earliest start time under any 
of its modes cannot be sooner than the release time 
of all resources that activity needs under that mode. 
So the earliest start time of activity under each 
mode cannot be less than the maximum of release 
time of renewable resources it needs under that 
mode and the earliest start time of activity
determined considering the finish time of its
predecessors.

• The earliest finish time of each activity under each 
mode is simply determined by adding the duration 
of the activity under that mode to its earliest start 
time. Subsequently, in the next step, earliest finish 
time of the activity under each mode is determined. 
Since we try to lessen the finish times of activities, 
the mode with the least earliest finish time is
chosen and the earliest start time and finish time of 
the activity is set.

Having determined the earliest finish time of all 
activities, we can calculate the renewable resources 
tardiness. For activities present in partial AL, the usage 
of renewable resources during time can be determined 
based on the schedule. In order to get a lower bound on 
the renewable resources tardiness, a renewable resource 
is needed for each activity not listed in AL only if it is 
needed under all modes of the activity. 

Therefore, a lower bound on the objective function 
value of each node is found by adding the lower bound 
of nonrenewable resources cost and renewable
resources cost. It is obvious that nodes with lower 
bounds more than the current upper bound for objective 
function value are fathomed. Also, the upper bound for 
objective function value is updated based on the
feasible nodes on the last level of branching tree. 

It is clear that a tight initial upper bound for the 
optimum value of the objective function hastens
fathoming nodes and speed up the whole process. In 
order to increase the speed of the procedure, the
objective function value of the final solution obtained 
by an efficient meta-heuristic algorithm is used as an 
initial upper bound for our proposed branch and bound
algorithm.

The Pseudo-code of the proposed Branch-and-
bound algorithm is shown in Fig. 1.

AN ILLUSTRATIVE NUMERICAL EXAMPLE

In this part we present a numerical example for the 
proposed problem. We consider an instance with 5 non-
dummy activities, 4 renewable resources and 2
nonrenewable resources. Figure 2 depicts the network 
of the problem. The unit costs of nonrenewable
resources are 19 and 16 respectively. Other problem
data related to renewable resources and activities have 
been presented in Table 1 and 2.

For this numerical example, we have to schedule 
dummy activity zero first in AL. This activity is the 
only  activity  without  any  predecessors and it has only 
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Table 1: Renewable resources data

Renewable resource Availability Release time Due date Tardiness penalty cost per unit of time
1  4  1  7  8
2  6  0  8  8
3  5  4  11  7
4  5  3  8  8

Table 2: Project activities data

Number Mode Renewable Nonrenewable
Activity of modes number Duration resources requirements resources requirements

0 1 1 0 0,0,0,0 0,0
1 3 1 8 0,0,0,0 2,2
1 3 2 11 2,0,0,0 2,0
1 3 3 8 0,0,0,0 2,1
2 2 1 3 3,0,0,0 0,0
2 2 2 2 0,0,0,0 0,0
3 1 1 1 2,0,0,0 2,0
4 3 1 9 0,0,0,0 0,0
4 3 2 13 3,0,0,0 2,1
4 3 3 9 0,0,0,4 1,1
5 2 1 3 0,1,0,0 2,0
5 2 2 10 1,0,0,4 1,2
6 1 1 0 0,0,0,0 0,0

Fig. 2: Project network of the numerical example

one execution mode. So we have only one node in the 
zero level of the branching tree. Subsequently, in the 
first level of the tree, four activities 1, 2, 3 and 4 can be 
placed at the end of current partial AL and as they have 
9 different execution modes in total, we have 9 nodes in 
the first level of the tree.

The activities 0, 3 and 1 listed in the current partial 
AL have been assigned modes 1, 1 and 2 respectively. 
In order to determine the lower bound on the
nonrenewable resources cost, we choose modes with 
the least related costs for the rest of activities not listed 
in current partial AL. As an example, if we choose
mode 1 for activity 5 that has 2 different modes, the 
amount of nonrenewable resources is 2 and 0 with unit 
cost of 19 and 16 respectively. Therefore the total
related cost is 38. Alternatively, if we choose mode 2 
for  this  activity, the amount of usage would be 1 and 2 

respectively  resulting  in  the  total  cost  of  51. So for 
this  activity  mode  1  is  assigned  during  the  process 
of nonrenewable resources cost lower bound
determination.

In order to determine the lower bound of renewable 
resources cost for the node assumed, first we schedule 
activities of partial AL. The start times of the three 
activities 0, 1 and 3 are 0 and their finish times are 0, 11 
and 1 respectively. Now we determine the earliest
finish time of activity 5. As the predecessors of activity 
5 are activities 1 and 3, the earliest start time of activity
5 cannot be less than 11. If we choose mode 1 for this 
activity, it only needs resource 1 and as the release time 
of this resource is zero, the earliest start time can be 
zero which is not feasible according to the possible start 
time of 11. If we choose mode 2 for this activity, it 
needs resources 0 and 3 and as their release time are 1 
and 3 respectively, the earliest start time is 3 which is 
again not feasible. Therefore, the earliest start time of 
11 is feasible for activity 5. Considering this start time, 
the finish time of the activity under two modes of 1 and 
2 is calculated 14 and 21 respectively, so mode 1 for the 
activity is assigned and the earliest start time and finish 
time is set to 11 and 14 respectively.

Once the earliest finish times of activities are
determined, we can find the latest possible time at 
which any renewable resource is needed. In order to 
find  the  length  of  time  for  renewable  execution, for 
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Table 3: The performance of the branch and bound algorithm

Sample problems sets # problems getting better results by B&B # problems solved completely by B&B

J10 (536 problems) 228 536
J16 (550 problems) 249 550
J20 (554 problems) 256 554
J30 (640 problems) 124 529
J60 (640 problems) 87 232
J90 (640 problems) 34 106
J30-r4-n4 (640 problems) 112 498
J60-r4-n4 (640 problems) 71 183

instance activity 5, no resource is needed until the
earliest finish time of this activity, because for any of 
renewable resources this activity has a mode under 
which it does not need any amount of that resource for 
execution. Instead, resource 0 is needed for activity 3 at 
least until the earliest finish time of this activity,
because this activity has only one mode under which it 
needs this resource for execution.

EXPERIMENTAL ANALYSES

In this part we present comprehensive experimental 
analysis regarding to the problem in question and its 
developed algorithm. All programs have been coded 
and executed on C#.NET 2008 platform on a PC with 
Core 2 Duo 2.53 GHz CPU and 3 GB RAM.

In order to have a full factorial design of
parameters,  we  use  sample  problems  library  of 
PSPLIB  [7]. Four  sets  of  multimode  project
scheduling problems, j10, j16, j20 and j30 have been 
used as small size and medium size problems. In
addition,  two  sets  of  large size  problems,  j60 and 
j90, have  been  generated  with  the  same  parameters 
as j30. Also, in order to observe the effect of having 
more  resources  in  the  problem, two extra sets of 
project  scheduling  problems  have  been  generated 
using Progen [6], which we call j30_r4_n4 and
j60_r4_n4. All parameters of generation in these sets 
are similar to the sets j30 and j60 respectively, but 
instead of having 2 renewable and 2 nonrenewable
resources, there exist 4 resources of each type in
problems of these sets. 

Extra parameters for the instances, which are
specific to our MRCPSP-TWRTPC problem and do not 
exist in simple MRCPSP, have been generated using 
uniform distribution as following: nonrenewable
resources unit usage cost from the range (2, 6),
renewable resources tardiness penalty cost from the 
range  (10,  30), renewable  resources  release  time 
from the range (0, 15) and renewable resources
deadline from the range (5, 15) plus the amount of their 
release time.

Table 3 shows the results of assessing the proposed 
branch and bound algorithm under CPU-time limitation 
of 100 seconds for the execution of the branch and 
bound algorithm. If the process is not finished within 
the limitation of 100 seconds, the best upper bound 
gained is reported. A tight initial upper bound for the 
objective function in branch and bound algorithm is 
effective in fathoming nodes of branching tree and 
speeding up the process dramatically. Hence, we used 
the objective function value of the best solution
achieved by a meta-heuristic algorithm for each
problem as an initial upper bound for the branch and 
bound algorithm.

High number of problems in each test function set 
has been solved to optimality by this algorithm within 
the CPU-time limit. Forth column of the Table 3 shows 
the number of problems in each function set that has 
been solved to optimality by our branch and bound 
algorithm in maximum CPU-time limit of 100 seconds.

CONCLUSIONS AND FINAL REMARKS

In this paper we introduced MRCPSP-TWRTPC
problem as a resource oriented cost minimization
project scheduling problem which is based on some 
rather more extensive realistic assumptions than the
similar project scheduling problems have been
introduced so far. We formulated this problem as a 
mixed integer programming model and proposed an 
exact branch and bound based approach to solve this 
problem. In order to limit the domain of the branch and 
bound tree, we suggested to first gain the tight upper 
bounds by an efficient meta-heuristic approach.
Considering the complexity of the presented problem, 
the computational tests demonstrate the efficiency and 
effectiveness of our proposed exact method. The results 
show that our branch and bound approach is able to find 
the optimal solutions in a short CPU-time for small size 
of j10 and j16 and medium size of j20 test problems. 
Also the outcomes express that our exact method can 
obtain the optimal solutions for large proportion of j30 
medium-sized problem sets in a limited CPU-time.
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An interesting research topic that might be
followed in the future studies is modification and
improvement of this proposed branch and bound
approach.  Also,  development  of  other  exact,
heuristic or meta-heuristic methods for the problem
described  in  this  paper  can  be  an  attractive
research direction.
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