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Spectral Galerkin Method For Solving Dynamic Stochastic Games
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Abstract: Tn this paper we propose a spectral Galerkin method for solving the simultaneous functional
equations that occur in dynamic stochastic games. The linear-quadratic (1.Q) approximation can be used as a
numerical method for solving these equations. The spectral Galerkin method is a special case of the so-called
weighted residual methods, commonly used in computational physics for solving partial differential equations.
This method leads to very simple solutions with minimal computational effort.
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INTRODUCTION Consider a stationary discrete-time infimte horizon

The literature about dynamic game theory applied to
capital accumulation and mcome distribution in the
tradition of the Lancaster model grew extensively during
the eighties. For example, the original result that its
equilibrium was inefficient rested on the solution concept
that it was used (feedback Nash equilibrium). However,
this inefficiency changes if we allow for different solution
concepts, such as the open-loop Stackelberg solution in
which one player acts as a leader and announces his
whole course of action in advance [1] or the feedback
Stackelberg solution in which the leadership property
holds recursively in each peried of time [2]. The use of
versions of the Folk theorem designed for dynamic games,
finally, allows for the emergence of efficient equilibria,
such as the ones developed by [3, 4].

A well-known continuous solution methodology for
dynamic games is Markov Perfect equilibrium (MPE). A
Markov perfect equilibrium (MPE) is defined as a profile
of Markov strategies that yields Nash equilibrium in every
proper sub-game [5, 6]. Few studies have provided
empirical estimates of equilibrium values, in part, because
solving dynamic games using either a feedback solution
or a Markov perfect solution 1s a challenging task. Ligon
and Narain [7] describe three solution methods for
obtaimng MPE. They first discuss the classical approach,
i which the Euler equation 1s used to derive MPE.

game m which two firms produce two goods that are close
substitutes. The goods are mfimtely perishable, which
elimmates a possibility of carryover. As an illustration,
one may think of two bakeries across the street from each
other, one bakes only donuts, the other bakes only
bagels. While each consumer prefers either bagels or
donuts, one good can substitute for the other if the other
good has a very high price. In addition, "yesterday's"
donuts or bagels have no appeal to an average consumer.
First, consider a deterministic version of the model. In
every period ¢, firm ¢ decides on an amount of good ¢, to
produce, a price p; at which to sell it and an amount x; of
new investment in the firm’s capital. The demand & = D,
(p,. p,) for each good 1s a function of both prices. Since
no mventories are allowed, each firm sells s, - min{d,.q,}
1e. any undemanded good 15 disposed of and any
unsatisfied demand results only in lost potential profits.
The cost of production C, (g,, k) depends on the quantity
produced and the firm’s capital stock. In our formulation,
we will think of k as a natural but flexible production
capacity, below which quantities can be produced at a
fixed cost and above which quantities can be produced,
but only at increasingly higher costs. Tnvestment adds to
the following period’s level of capital, &', = (1-&) k, + x,,
where £ is the capital depreciation rate, but also adds
additional cost A, (x;) to the current peried’s net income.
Thus, firm’s current period profit can be presented as:
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Each firm chooses its price, production and
mvestment {p;, ¢, x;) so as to maximize the present value
of current and future profits discounted at a rate 5, taking
the other firm’s policy as given. If V) (k,, k) denotes the
value of firm 1 given capital stocks &, and k,, then, by

Bellman’s principle of optimality [8]:

Vilkiky) =max{p;s, — C (g5 ) — B () + BV(KL K> )}
k= (1= ), + x, 2

This pair of functional equations must be solved in
order to find optimal strategies of each player. Before
proceeding with a discussion of numerical solution

methods, we discuss the properties of the model and
compare 1t to those exhibited by the model m Judd [9, 10].

Galerkin Method: In the last ten years, spectral methods
have witnessed a growing interest in collocation methods
relying upon Lagrangian bases as well as m variational
formulations of Galerkin type using Legendre polynomials
[11, 12]. In particular, in the context of the Galerkin
method, Jie Shen [13] introduced a new basis of Legendre
polynomials to solve problems in two dimensions by
diagonalization. Shen’s basis has the mteresting property
of being orthogonal in the energy norm (i.e., the 1.2 norm
of the first derivative of the variable), so that the
diagonalization has to be performed on the mass matrix
which has a very simple pentadiagonal profile. In Shen's
algorithm, the spectral decomposition 1s performed only
in one spatial direction and the algorithm has been
extended also to deal with a spectral representation based
on Chebyshev polynomials [14]. As a matter of fact, the
mass diagonalization for the T.egendre approximation can
be applied n both spatial directions. In mathematics, in
the area of numerical analysis, Galerkin methods are a
class of methods for converting a continuous operator
problem (such as a differential equation) to a discrete
problem.

Let w(x) denotes a non-negative, integrable, real-
valued function over the interval y. We define:

Ly)=iv:y >R v[, <o}

Where
1

[oly= 71960 P s

884

is the norm induced by the inner product of the space

3

2 aﬂd<u,v>w:j:u(x)v(x>n<x>dx.

For applying Galerkin method, the unknown function
#(x) can be approximated as:
i
u(x) =3 ¢ (x) (6)
J=1
Where the unknown coefficients ¢, are called the spectral
coefficients and ¢ are the basic functions that are
orthogonal, which it means
<@, (x). b, (x)> =40, (7
Where 8,, 1s the Kronecker delta function. The unknown
coefficients ¢, in Eq. (1) are determined by orthogonalizing
the residual u(x) with respect to the functions oY
=

This yields the discrete system

<ux), ¢>=0,j =12, m (®)

Eq. (2) gives m nonlinear algebraic equations which can
be solved for the g

consequently, unknown function u(x) can be calculated.

unknown coefficients and

Solving Model: The
dynamics 1s frequently used to analyze the standard
models of capital accumulation. In the economic growth
problems, a social planner is confronted with the

infinite horizon, autonomous

followng optimization question:

Viko) = max 3 B Flk. i) ®)
)il 0
Subject to:
ko e (k)i=012,.. (10

kek Be(01)

Here all capital stocks &, £ =0,1,2,... belong to a given
convex set K, which 1s called the state space. The
mapping p¢ -y is called the return function and I' 1s called

the technological correspondence and 8 is the time-

preference discount factor. Dynamic programming

approach starts with the value function Fik;), defined in

Eq. (3). Because the objective possesses the recursive

property, the value function must satisfy the following

functional equation:
V)= max (1)

=

[F (k. b )+ BV ()],
T(ky)
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Actually, the principle of optimality in dynamic
programming has the formal representation:

Vik)=

kt+1

max  [Fl. b))+ Vi)l t=0.1,..

€T (k)

Which 15 the Bellman equation. The solution of the
single-agent  dynamic  optimization problem
characterized by Bellman’s equation:

18

Vi{lg)= max {fk.x)+ BEkIV(g(kbxt:et)}: ek
xtEX(kI) (4)

The evolution of state variable over time can be
represented by:

gl x.8,) = ki (14)
Where g (k, x,, £) is the transition equation function and
£ 1s an exogenous random shock. Taking into account
this statement of the problem, an appropriate solution
method exists in the literature, called stochastic dynamic
Nash game with perfect information (PSDNG) [15]. The
above equation is a functional equation. Tts unknowns,
the value function ¥{.) and the optimal policy x,*(.), are
both functions defined on the state space K. Except in
very special cases, Bellman’s functional equation lacks an
analytic closed form solution and can only be solved
approximately using computational methods. A variety of
methods are available for computing approximate
solutions to Bellman equations, including linear-quadratic
approximation and space discretization. However, m most
applications, particularly stochastic models with bounded
decisions, these methods either provide unacceptably
poor approximations or are computationally inefficient
[16]. To compute an approximate solution of the unknown
value function ¥ using Galerkin methods, the value
function approximate should be written as a linear
combination of # known basis functions ¢,, ¢,,....¢, on k
with undetermined coefficients as

Vil = e 0,0k (15)
=1

Where ¢; 1s the basis function coefficient. Then, the value
function on the left hand side of Eq. (4) and the second
term on the right-hand side are replaced by Eq. (5).

The unknown ceefficients ¢, in Eq. (5) are determmed
by  orthogonalizing the residual Tik) — Ak, x) +
BEV(glk, x, &) with respect to the functions ; }*}ﬂzl . This

vields the discrete system

Vi)~ [l )+ BEV(glhe, %806, =0,/ =1.2,..m (16)
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The weighted inner product <,> is taken to be

< g(x), F(0) 5= [ g Flom(xid an
Here, w(x) plays the role of a weight function which 1s
chosen depending on the boundary conditions, the
domam and the differential equation. Eq. (6) gives m
nonlinear algebraic equations which can be solved for the
unknown coefficients ¢, by using the well known
Newton's method and consequently, ¥ (&) given in Eq. (4)
can be calculated.

CONCLUSIONS

The focus of this paper 1s on the development of
models that may be used to predict investment,
production and price trajectories associated with
alternative economic scenarios that may unfold. However,
these trajectories depend upon the behavior of the
players.

Spectral Galerkin solution method (developed in the
physical sciences) 1s used to solve the model of dynamic
stochastic games. Proposed method is a generally useful
technique that 1s flexible, accurate and numerically
efficient.

The choice of basis functions is related to the
curvature of the value function. The larger the mumber of
basis functions, the greater the computational burden, so
the researcher will want to experiment with various basis
functions schemes and dimensions of the problem to

render 1t computationally efficient.
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