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Abstract: The aim of this paper is to investigate the performance of the ninth degree spline method for solving
the system of ordinary differential equations and to estimate the numerical solution in the whole interval. By
considering the maximum absolute errors in the solution at grid points for different choices of step size, we
conclude that ninth spline produces the accurate results in comparison with other methods.
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INTRODUCTION
Consider the system of n-equations
dA
E—f(l,ul, le, u3,....,un) (11)
A(tg) =n

Where A :[u15u2a u}s-'-aun]Ta f = [ﬁa fzafz’,a'-"sf;z]T’n = [nan:nSa"-’nn] ’

Many problems in applied sciences and engineering are modeled as system of differential equations such as spring-
mass systems, bending of beams, chemical reactions and so forth can be formulated in terms of differential equations.
Since the system of differential equations has wide application in scientific research, therefore faster and accurate
numerical solutions to this problem is very importance [1-3].

There are several methods that can be used to solve the system of differential equations numerically. It had been
proposed by [4, 5] solved some order initial value problems, a numerical methods for solving system of ordinary
differential equations has been proposed by [6].

The basic motivation of this paper is discussed convergence analysis of the ninth spline method for solutions
system of differential equations. In this paper, we will use the function, third, fifth and seventh boundary conditions,
to constructed the ninth spline with two initial conditions. Section 2 is devoted to the description of the method,
existence and uniqueness of the method are obtained which required in proving the convergence analysis of the
presented method in section 3. Finally, in section 4, numerical evidences are included to show the practical applicability
and the absolute errors are superiority.

Description of the Method: we present a ninth spline interpolation for one dimensional and given sufficiently
smooth function f{x) defined on I =[a, b] and A,: a = x, <x, <x, <...<x, = b, denote the uniform partition of 7 with knots
x,=a+ih, where i =0,1,2,....,n —and ,_b-a is the distance of each subintervals and denoted the ninth spline by S,(x)
in [a, b] as: "
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L mx)? L, mx) L, mx)t = x) )
so(x)=yp + (x —x, + + + ay 4 +——F— +
0(X)=yo +(x—x0) )0 5 g 0 a4 0 Y0 o
(x- 0) (7)
5040
On the subintervals [x,, x,] where a,;, j = 5,6,7 are unknowns to be determined.
Let us examine subintervals [x,x,,,] i=1,2,..., n-2. By taking into account the interpolating conditions, we can write

the expression, for S; (x) in the following form [4, 5].

(.X XO) a06+ (x xo) aog +(X Xo) a09

3
X x
50 = i+ (= x0) gy + (= )+ T e (it #2000
6 120 (2.2)
(x— 1) (7)
5040 i

Where a,;, i = 1(1)(n—1),j=1,2,4,6,7,8,9. are unknown values to be determine.

8 9
(x—x,)° Qo+———y; " +(x-x) a3+ (x—x;) a;9,

Convergence Analysis: In this section, we investigate the convergence analysis of the method for ninth degree spline
function which are developed by [4, 7, 8, 9]. The equation (2.1) yields the two initial conditions S (x,) =y (x,) and S (x,)
=y "(x,) and applied the boundary conditions $”(x,) =" (x,)), = 0,3,5,7, for i = 0, 1,...,n in equation (2.2), we obtained the
following:

8 18 , 9 h ) ) w (7 _ (7)

aga=——1[yi—vo]— 5y + 6790 +—— —40 4

0.4 13h4[y1 ol R 13hzyo 312h[ i +67yq] 9360[ N Yo 1- 157248[ %) 1

6 6 3 | - 1 ) 4 43,0 (7 (7

ag s =———[y - - — 377 —133y71,

0,6 13hé[yl Yol+ 13h5y 13h4yo 52h3[ ol 9360 h[ N3y l+ 786240[ n Yo'l

9, 3 P 5) 5) 7 7

agg=——n —yol-—=»' - o - D+ 3961+ —[20y( +2591-— L1164y 116151,

08 T o O o T s T T Sea00m 1834560 | 0
and
09 = ——g = o1+ — ¥/t 3y (14 3351~ ———— (2009 + 2530+ ———— (7357 + T3],

“ 91k 91k 91k 10924 1638004 5503680/

Substituting these values of a,,, a,4, a5 and a,, in equation (2.1), we obtain:

306 215, 62h n* n* ) ®) h° ™ ™
@y = o[y =yl =2 ~ 22 2991 =951 — —— 25y —37;071+ — L _[115y(D —133,(7,
12 =g T Yol =g yo =g o+ 12970 ¥5l- 32760 21 Y0 1+ 550360 1O Yo

and

612 612 , 612 n 5 n
2a; 5 =——[ ¥ = Yol —— Vo ——— "+— 2000 = 31581 - —— 47 5591+ 33,0 _35,7,
1,2 91h2[)’1 Yol TACEIRL [20y5 —31y5] 0920[ N Yo 1+ 305760[ 3 Yo'l

We shall find the coefficients of S(x) for i = 1,2,3,....n — 1. From equation (2.2) we have:

18 18 18 5 5 n 7
T i i~ iy~ Iy + 675 —[7y,<+{ ~ 40y - ——[4y]) -7y

(7)]
312h 9360 157248 ’

di4 =

D+ 300 ) + 4001+ — 7 1337,

a—6[ ]+6a+6a+1
i6 Yie1 =i 135 .1 135 i,2 5073 93605~ -t 786240 il

1348

9 9 9 3 om ’ ) ) 1 %) (7)
a.q = sy —vi1- a,— a;,— iy +3y7+ [20y +25y;7 - [64y: { +161y;"],
B T T o1p8 T qasyS T TR 3640063 1834560~ 1 ’

and

) 4 25,05

[20y] +25y1+ (73951 + 77371,

a ——L[y -y ]+ 2 a; |+ 2 a; 5+ ! iy +3y - —— _—
B g T g8 T g7 T 00220 T T 1638008 5503680/
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Substituting the values of a,,, a,, a;5 and a,, in the equation (2.2), we obtain the following relation, for i =

1,2,...,n— 1.

306 215 - 124h h? ) ) ™ 7
ariyy =—1[ kil 2097 — ——[25 3701+ ——— 11597 13377,
i1 91h[y1+1 yil- o1 YT gy a2t 1092[ Vit =957 32760[ Yivi =37y 1+ 5503680[ Yidi il
and

612 612 430 ho ) 5 5 n 1 ;
12 =g Wi =Vl =g~ + g [205 =31 —10920[ 7y =555+ +3057605 37 35,71,

Now the coefficient matrix of the above system of equations can be found, in the unknowns a;,, a;,, a;.,, and a;,,,,

i=1,2,..

Theorem 3.1: Let y(x) be the exact solution of the system (1.1) and we assume y,, i =

.,n-1 which is a non-singular matrix and hence all the coefficients are determined uniquely.

1,2,...n—1, be the numerical solution

of (1.1) and S(x) be a unique ninth spline function which is a solution of the problem (2.1). Then for x € [x,,x,] we have:

17?99 "wo(f3h),r =9, 2219629hFW9(f;h)”:8
3;322 "wo(f3h),r=1, % "wo(fih),r=6
s =20 (o)< 1120630 wo(f3h),r = %h’wg (f3h),r =4
%hr wo(f3h).r =1, %’“ wolf3B),r =0

Where W,(f:h) denotes the modules of continuity of y*.

Proof: Let x € [x,,x,] from equation (2.1) and using Taylor’s expansion formula we get

59 (x) = ¥ (x) = 362880 o — v (x) G.1)

Using (2.1) and a,,, we obtain

SO (x) - y(g)(x)‘ - ‘362880%9 - y(9)(x)‘ < %wg (f:h) (3.2)

From (2.1) taking the eight derivatives and subtracting the function, we obtain
S(()8) () - y®) () =40320a0 g +362880h a9 g — y®(v) » using Taylor’s series expansion on 19(x) about x = x,, we get.

S (x) - y(g)(x)‘ - ‘40320%,8 +362880(x — x;)ag o — ¥ (x9) + (x = xp) y<9)(a1)‘ < %hwg(h, £y, where x,<a, <x,.(3.3)

Also, from (2.1) taking the seventh derivatives, we get

SV =y D (x) = 7 + 4032044 5 + 18144047 @ o — » 7 (),

Hence
431
56700 =y 0| < T w3, (3.4)
182
and by taking the sixth derivatives with using Taylor’s series expansion on 3*°(x) about x = x,, we get:
2143 2143
SOy ‘ h3‘ © ©) ‘ h (3.4)
0 (¥)=y7(x) o152 (B =y (B) 184 o (f3 )
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Where x, < B,, B, <x,.
From equations (2.1) and substituting the coefficients, we get:

85
56700 = 5O 0| < o htwn (13 (3:5)
273
Using Taylor’s series expansion, by the same way we can find the following:

103
‘Sé“)(x) - y(4)(X)‘ < —h5W9(f sh),

s 0-yP )< 21840 wy (f:h),

|60 = (0| £ g5 Ao (3
and

[S00) = 50| < =S5 Ko (30)

Lemma 3.1: Let y(x) be the exact solution of the system of (1.1) and we assume y,, i = 1,2,...n — 1 then |e;)|< ¢; * w, (fil)
fori=1, ..., n-1

Where
€1 =01~ Vs (3.6)

and ¢; depend on the numbers of intervals.
Proof: For y(x) € C° [0,1] then using Taylor’s expansion formula, we have:

(-x)’ a-x)

i ) —— 6,),
5 V) 020 > @)

Where x; < a; < x,,, and similar expressions for the derivatives of y(x) can be used.

Now if i=1 then from equation of a,, and using (3.6) we obtain

y(x) = y(x;) +(x = x;)y'(x;) +

__ 5 291" (9 »© 234° »© 5O (3.7
WY =507 Y 860207 P T TsmasY O T 01am2” ) Ta030” ()
Where x, < a,, a,, as, a,, as, a,, <x,.
from equation (3.7) we get:
89

s < 1572480 wolf3h) so 6= g0

Also, if i=2 then from equation of a,, and using (3.6) we obtain
64062 8 64062

e | S———h"wo(f;h) so ¢ =—————.

ezl 13095680 "oV 50 €2 = anas k0
By the same way as in the above, we see that the inequality |e,;| = ¢, A* wy (f;h) for i= 1, ..., n-1 holds.

This completes the proof of the Lemma 3.1

Lemma 3.2: Let y(x) be the exact solution of the system of (1.1) and we assume y,, i = 1,2,..n — 1, then |e,)| < ¢/, A’ w,
(f;h) fori=1, ..., n-1

Where
€2 =2a; 5=y (3.8)
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and ¢," depend on the numbers of intervals.

Proof: For y(x) € C° [0,1] then using Taylor’s expansion formula and similar expressions for the derivatives of y (x) can
be used.
Now if i=1 then from equations «,, and using (3.8) we obtain

p h 9 9 9 11h 9 9 (3.9)
e = 2ar s — »O ( 3O 3O NG :
1,2 L2 =V = groen Y (B)+ 3276y (Br)- 262050 (B3)+ >03840° (Bs) 010” (Be)
Where x, < B, B>, Bs, Bs, Bs» Bs, Bs» < X1
From equations (3.8) we get:
11 11
;h) so ¢
2] 29120 "o 1729120
Also, if i=2 then «,, and using (3.8), become
182772 4 182772
=2a;, - V5| < ————h h), S0 ¢h=—-—""—.
[e22] =2 -3 143095680 "V S0 = o ses0
By the same way as in the above, we can see that the inequality ‘el. 2‘ <cth? wy(f3h) fori=1, ..., n-1 holds.

This completes the proof of the Lemma 3.2.

Theorem 3.2: Let S(x) be a unique spline function of ninth degree where y(x) € C° [0,1] the solution of (2.1). Then for x
€ [x;, x;,]; =1, 2,..., n-1, the following error bounds are holds:

9
34398 (34398¢; +17199¢; + D) wy (f 1), =0,
8
22929¢; +22929¢! +16) wy(f3h),r =1,
22929( i i ) 9(f )
h’ 407
S - < 35062¢) +133)wo(f3/).r =2 Sywg(f1h),r =3
s -3 3506< (A =22 (3h)
103i | 85 4 3460 s
h),r = 4—hw h),r=>5 wo(fih),r=06,
1260 wy(f3h), 73 o(f3h), o(f3h)
43 ll 3461 2611
Swo(fih)r =17 th(f h),r=38 W9(f h),r=9
182
Proof: Let x € [x, x,,,] where i=1, 2, ..., n-1, then from equation (2.2) and using Taylor’s expansion formula we get
5O () =y (x) =362880a o — v (x) (3.10)
Using (2.1) and «,,, we obtain
©) ©) ©) 2161 (3.11)
517 (5) =10 =[362880a;5 ~ V(0| < 2wy (3. :
From (2.1) taking the eight derivatives and subtracting the function y®(x), we obtain
58 (x)— y®(x) = 403204, 5 +362880h 4,9 — y® (x),
Using Taylor’s series expansion on y®(x) about x = x,, we get
3461
S0 =y 0| = [40320a; 5+ 3628800r— )59 = v )+ (v =)@y, =y (1), (3-12)
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Where x, < &;; <x,.

Also, from (2.2) taking the seventh derivatives, we get S(7)(x) 3D (x) = y(7) +40320a; & +181440h2 ym(x) .
Also, from (2.2) taking the seventh derivatives, we get

431i
|57 = 3D ] < w120 (3.13)

Where x; < &;, <x,.
And by taking the sixth derivatives with using Taylor’s series expansion on 1*°(x) about x = x,, we get

2143 21431
569~y 00| < 21y 03~ ¥ )] < 2w (5, (3.14)
2184
Where x; < &3, &;, <xi., and also
5960y )= g 150, (3.15)

Where x; < &3, &, 05 <Xi,,.
Using Taylor’s series expansion, by the same way we can find the following:

103i
[0y 00| < —h5w9<f;h>,
5@ €) ‘
[s80) =y O < S22 Ko (30
Now using the above two lemmas (3.1) and (3.2), we obtain

133 n’
< 35062¢! +133 :h),
35062 Two(f3h) 62( ¢ wo(f3h)
8 8

h
Sya35 "9 < H ey (1) g (1) + s (f5h)

|
S|2ai,2 _yi|

|S(X) y(x)|<all yz+h(2a12 y1)+

X
<
22929

(22929¢; +22929¢) + 16)wo (3 1),

and
"’ 24 "’
|S;(x) = y(0)| < 1° (@) = y})wo (1) +— T Caza=ymo (i) + oo (f5h) < e

(34398¢; +17199¢; + 4)wy(f3 h).
This proves Theorem 4.2 for x € [x, x;, 1, X;], = 1,2,....n —1

Numerical Illustrations: In this section, three numerical examples are presented and those problems are referred in [7]
and [3]. The problems are tested to the efficiency of the development solutions and to demonstrate its convergence
computationally. The problems have been solved using our method with different values of step size h; it’s tabulated
in Tables 1, 2 and 3. These show that our results are more accurate.

Problem 1: [3]

Consider the system

y=y2

V2=

V3=008(1)=2y3 =) + )
y1(0) =0, y,(0) =1, y3(0) =2.
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Table 4.1: Absolute maximum error for S(x) and its derivative with different values of tolerance for the problem 1:

TOL FS AMAXE® AMAXE® AMAXE® AMAXE® TIME (ms)
107! 0 2.0935%x10°° 1.94x1072 13.95x1072 6.735%107! 0.03509
10~ 0 6.214x10° 1.93x10~* 16.5%107 2.025x107" 0.034659
10°3 0 4.0985%x107% 2.1793x10~° 17x1073 1.489%107! 0.047356
TOL FS AMAXE® AMAXE® AMAXE® AMAXE® TIME (ms)
107! 0 4.2072x10° 7.4365x10° 18.12x10° 9.2218x10° 0.03509
1072 0 4.9219x10° 8.3941x10° 19.31x10° 9.5228x10° 0.034659
1073 0 4.9979%10° 8.4941x10° 13.829x10° 9.5245%10° 0.047356
Table 4.2: Absolute maximum error for S(x) and its derivative with different values of tolerance for the problem 2:
TOL FS AMAXE® AMAXE® AMAXE® AMAXE® TIME (ms)
10~ 0 1.7234x10~7 15%10~2 13.18x102 1.07x1072 0.089503
1072 0 1.6722x10~'2 1.5x1073 11.7x10~* 1.0067x10~* 0.160630
1073 0 1.648x107"7 15x107* 12x10°¢ 1x107° 0.056985
TOL FS AMAXE® AMAXE® AMAXE® AMAXE®? TIME (ms)
10~ 0 2.21x107! 2431107 4.6385x10° 6.7533x10° 0.089503
1072 0 2.02x107° 2.04x10° 4.0611x10° 6.0795%10° 0.160630
1073 0 2x1073 2.004x10° 86.706x10° 6.008x10° 0.056985
Table 4.3: Absolute maximum error for S(x) and its derivative with different values of tolerance for the problem3:
TOL FS AMAXE® AMAXE® AMAXE® AMAXE® TIME (ms)
107! 0 1.3889x10~° 5x1073 4.25x1072 1.6667x107* 0.05605
1072 0 1.1102x1071 5%107° 3.9x1073 1.6667x1077 0.184103
10~3 0 0 51077 3.85x10~* 1.6667x1071° 0.056230
TOL FS AMAXE® AMAXE® AMAXE® AMAXE® TIME (ms)
107! 0 5x1073 1x10~! 1x10° 52x10~* 0.05605
10~ 0 5.057x10~ 1102 9.433x10~! 5.0167x10°5 0.184103
10°3 0 1.4x1073 1x1073 1.4229%10* 5.0017x10~7 0.056230
Problem 2: [10] and
Consider the system

TIME(ms) The execution time taken in microseconds.
1 =» The absolute of maximum error with respect to derivatives
2 =2V, — 0 defined as [1]:
y1(0)=0,y,(0)=1, [0, 50]

AMAXEY = max el-(j)“ = max s(j)(x,-) - y(j)(xl-)“ where j

1<i<n 1<i<n

The exact solution is y, (x) = €', y,(x) = (1+x(e").

Problem 3: [10]
Consider the system
y=y

y2=n0

1(0)=1,y,(0)=1, [0, 100]

The exact solution is y, (x) = €', y,(x) = €'.
The following notations will indicate in the tables:

TOL Tolerance

FS Total failure steps

AMAXE Absolute of the maximum error with respect to
derivatives

be order of derivatives on whole intervals and y(x,) is the
exact solution.

CONCLUSION

The approximate solutions of the system of
differential equations by using ninth spline interpolation
show that our method is better in the sense of accuracy
and applicability. These have been verified by maximum
absolute errors given in the tables it changes with respect
to the step size of the tolerance and various problems.
Some properties of spline are obtained which are required
in proving the uniqueness, existences and convergence
analysis of the present method.
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