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Abstract: In this article, we investigate the nonlinear evolution equation, namely, the (3+1)-dimensicnal
modified KdV-Zakharov-Kuznetsev equation by applying the improved (G'G)-expansion method to construct

some new traveling wave solutions. The obtained solutions are expressed in terms of the hyperbolic, the

trigonometric and the rational functions including solitens and periedic solutions. The attained solutions
become some special functions when the arbitrary constants taken particular values. Tt is important to mention

that some of our solutions are in good harmony with the existing results which certifies our other solutions.
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INTRODUCTION

The investigation of travelling wave solutions for the
nonhinear evolution equations (NLEEs) plays crucial roles
in many scientific and engineering areas, such as, plasma
physics, chemical physics, optical fibres, solid state
physics, fluid mechanics, chemistty and many others.
In recent years, various methods have been presented to
obtaimn traveling wave solutions of the NLEESs, for example,
the Hirota’s bilinear transformation method [1], the
homotopy perturbation method [2-5], the tanh-function
method [6], the JTacobi elliptic function expansion method
[7], the inverse scattering method [8], the F-expansion
method [9], the projective Riccati equation method
[10, 11], the tanh-coth method [12], the variational
iteration method [13-21], the He’s polynomials method
[22-24], the first integral method [25], the Cole-Hopf
transformation method [26], the Exp-function method
[27-30], the direct algebraic method [31, 32] and others
[33-37].

Recently, Wang et al. [38)] mtroduced a method called
the (G¥G)-expansion method and obtain traveling wave
solutions for the four well established nonlinear evolution
equations. Then, many researchers used this method
to solve many nonlinear partial differential equations.
For example, Naher ef al. [39] obtained abundant traveling
wave solutions of the Caudrey-Dodd-Gibbon equation by

using the method Abazari [40] concerned about the
same method for constructing exact solutions for three
nonlinear evolution equations. Feng et al. [41] applied
this method to seek solutions of the Kolmogorov-
Petrovskii-Piskunov equation. Neirameh and Alibeigi
[42] constructed the traveling wave solutions of the
(3+1)-dunensional Kadomtsev-Petviashvili equation via
the (G%G)-expansion method. Roozi and Mahmeiani [43]
studied the (2+1)-dimensional Kadomtsev-Petviashvili
equation to construct exact solutions via the same
method. Lately, the method has been extended for
searching exact solutions by different authors, such as,
Hayek [44] expand the method called extended
(G AF)-expansion method to construct exact solutions of
the KdV Burgers equations with power-law nonlinearity,
Guo and Zhou [45] enlarge the method to obtain analytical
solutions for some NLEEs and so on.

More lately, Zhang et al. [46] generalized the method,
called the improved (G "/G)-expansion method for solving
nonlinear evolution equations. Afterwards, many authors
used the method for obtaming exact traveling wave
solutions of the nonlinear PDEs. For instance, Zhao et al.
[47] applied the method to the variant Boussinesq
equations, Hamad et al. [48] unplemented the method to
the higher dimensional potential YTSF equation, Nofel
et al. [49] related the method for searching traveling wave
solutions of the fifth-order KAV equation and so on.
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In this article, we
(G/&)-expansion method to obtain new traveling wave
solutions for the nonlinear evolution equation, namely,
the (3+1)-dimensional modified KdV-Zakharov-Kuznetsev

equation.

apply the improved

Description of the Improved (G’/G)-expansion Method:
Suppose the general nonlinear partial differential
equation:

u,uf,ux,uy,uz,uﬁ,uﬂ,um,uxy,

=0, (1)

uyy=uyt=uzz=uz£=uzx:”zyf"

Where u = u(x, v, z, t) i3 an unknown function, Q is a
polynomual m u(x, y, z, £) and the highest order derivatives
and the nonlinear terms are involved in its partial
derivatives.

The main steps of the improved (G /G)-expansion
method [46] are as follows:

Step 1: Consider the traveling wave variable:

u(x,y.z,t)=v(n), nN=x+y+z-V, (2

Where I71s the wave speed. Now using Eq. (2), Eq. (1) 1s
transformed into an ordinary differential equation for w(n).
Fvv' v ", =0, 3

Where the superscripts stand for the ordinary derivatives
with respect to .

Step 2: If possible, integrate Eq. (3) term by term one or
more times, vields constant(s) of mtegration For

simplicity, the integral constant(s) may be zero.

Step 3: We assume, the wave solution of Eq. (3) can be
expressed in the form [46]:

)
j=-n

with G = G (1) satisfies the second order linear ordinary
differential equation (ODE):
G+ AG+uG=0 5

Where a(j =0,+1,+2,..,+n), Aand g are constants.
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Step 4: To determine the integer 7, substituting Eq. (4)
along with Eq. (5) mto Eg. (3) and then consider
homogeneous balance between the highest order
derivatives and the lighest order nonlinear terms
appearing in Eq. (3).

Step 5: Substitute Eq. (4) and Eq. (5) into Eq. (3) with the
value of # obtained in Step 4. Equating the coefficients of
(GYGY, (r = 0,£1,£2,..), then setting each coefficient to
zero, vields a set of algebraic equations for:

a(f = 0+tL+2. AV .Aand u (6)
Step 6: Solve the system of algebraic equations
with the aid of Maple 13 and we obtain values for
a,(j=041,£2,. n), V, Aand g. Then substitute obtained
values m Eq. (4) along with Eq. (5) with the value of #, we
obtain the traveling wave solutions of Eq. (1).

Applications of the Method: Tn this section, the method is
used to construct some new traveling wave solutions for
the (3+1)-dimensional modified KdV-Zakharov-Kuznetsev
equation which is very important nonlinear evolution
equation in applied sciences. The obtained solutions and
the solutions obtained in previous literature have been
compared and discussed m this section. Furthermore,
the obtained solutions are demonstrated in graphs using
the commercial software Maple.

The (3+1)-Dimensional Modified Kdv-Zakharov-
Kuznetsev Equation: In this subsection, we consider the
(3+1)-dimensional modified KdV-Zakharov-Kuznetsev
equation [50]:

=0 9

“t"‘JB“Z“x""“M;"‘“ +u

¥y

X ZZ 2

Where f3 is a nonzero constant parameter.
Now, we use the wave transformation Eq. (2) mnto Eq.

(7), whach yields:

T+ By 43" =0, &)
Where the superscripts stand for the derivatives with
respectto 7.

Eq. (B) is integrable, so that, integrating once with
respect to 1 yields:

va+%,Bv3+3v"+K:0, ®

that could be

Where K 13 an integral constant
determined later.
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Taking the homogeneous balance between v’ and v' in Eq. (9), we obtain # = 1 Therefore, the solution of Eq. (9) is
the form as:

1 el J
v(n)= 2, a{—} = (10)
“~ e
Where afj = 0,41) are all constants to be determined.

Substituting Eq. (10) together with Eq. (5) into Eq. (9), the left-hand side of Eq. (9) 1s converted into a polynemial
of (GYGY, (j = 0+1,42,...) According to Step 5, collecting all terms with the same power of (G%G) and setting each
coefficient of the resulted polynomial to zero, vields a set of algebraic equations (which are omitted to display, for
simplicity) for aff = 0,41.£2,....4n) VKA and z.

Solving the system of obtained algebraic equations with the aid of algebraic software Maple, we obtamn three
different types of solutions.

Casel: e =0, ag=t 3Ai - 6i Ck-o, V:félz+6,u, (11)
J28 2B 2
where A p are free parameters and B+0.
Case 2: 3Ai 3 tia 2P (12)
A =da_y, g =1 , =0, =0, V:——iziia_,p =N
1 1. \/ﬁ 1 5 W2h. u p

where a ,, A are free parameters and 5 # 0.

: Oui 34 6i 30 3
Case 3 I o S S Y L A S5 Y SR V7Y a3

J2B 2B J2B J2B 2

where A p are free parameters and 5 # 0.

Case 1: Substituting Eq. (11) together with the general solution Eq. (5) into Eq. (10), we obtain three types of travelling
wave solutions of Eq. (9):

Hyperbolic Function Solutions: When A° — 4u>0, we obtain

1 1
v(n)—+3im Asmha\}lz—4#H+Bcosh5\’12_4ﬂn
28| cosn A% 4+ Bsinh {22 - au (14)

where ,_ ., . 2_[%312 +6ﬂ]t, 4 and B are arbitrary constants.

Various known results can be rediscovered, if 4 and B are taken as special values.
For Example:
+ If4=0butB+ 0we obtam,
+ 3;\/ AT —ap 17
v =— — " coth—A" — 4 . 15
m="""7p VA g (15)
+« IfB=0butAd + 0we obtam,

N
v(n)_Wtarm;\/lz—ﬁlu . (16)

13
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s IfA4#0, 4B, weobtain,

cfaa
v(n)= N W tanh@\/lz ~ap nw} an

158 -3
where 50— tann IZ’ n:x+y+z—[7/lz+6,u}-

Trigonometric Function Solutions:

when A*-4u<0, we obtain,
1

1 2 2

f — 2| —Asin 4 — A"+ Beos—y4u— A1
V(n):i3z 4{_# 2 12 12 18
2B ACOSE\]4u—12n+BSin— dp- Aty (18)

2

where ,_ 4, - [‘7312 H;#}, 4 and B are arbitrary constants.

Various known results can be rediscovered, If 4 and B are taken as special values.
For Example:

s« IfA4A=0DbutB # 0, we obtain,

¢3-\/4 —A 1
v(n):%cota 4pu-A%n. (19)
« IfB=0 butd = 0, we obtain,
+3iap— AT 1
v(n):%taﬂg\}él,u—lz n. (20)

s IfA# 0, 4B, we obtain,

iy aa2
v(n)—wtaﬂ@w#lz nfno} 21

where ;0 - taﬂflé_

Rational Function Solution: When A’ — 44 = 0 we obtain

6f B
"(”)‘+m[,4+3n} (2

where ;-4 - [‘7312 H;#}, 4 and B are arbitrary constants.

Case 2: Substituting Eq. (12) together with the general selution Eq. (5) mto Eq. (10), we obtain three types of travelling
wave solutions of Eq. (9):

14
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Hyperbolic Function Solutions: When A* — 4 = 0, we obtain

-1

1 %\szzhu[Asinh%\Mz — 4L n+Bcosh%\}/l274,u nJ ki
- I
v(im=a_| —+

+
B (23)
2 [Acosh%\f;{zle,u n+Bsinh%\/lz — 4L nj 2B

Where - .1,y 2_[%312 rm,h/ﬁ]r, e rmqﬁ} 4, and B are arbitrary constants.
6

Various known results can be rediscovered, if 4 and B are taken as special values.
For Example:

¢« If4=0butB = 0, we obtain,

-1
—A \/1274 1 34
v(n)—a_1£7+%cothg\}lz—4;1”7} i\/ﬁ. (24)

¢« IfB=0DbutAd # 0 we obtain,

V2B (25)

o If4d =0, 4>B, we obtain,

-1
2 .
v(n)—a1[—1+l4#tanh[;\llz—4,u n+n0ﬂ L 3 (26)

where ’?0=tﬂﬂh71%, ﬂ=x+y+z—[;2312 ilﬂ—lﬁ]t, PEELSUC
6

Trigonometric Function Solutions: When A* — 4 4 <0, we obtain,

-1
1 1
_A fAsmE\M,uflszchos \I4#,12n 34

v(n):a_l —+ 2 + R
z Acos%\’zl,uf12n+Bsin%1l4uflzn vZB (27)

Where j-yyp42- [%312 imqﬁjr, > u= im—l\lﬁ, , and B are arbitrary constants.
6

Various known results can be rediscovered, i1f 4 and B are taken as special values.

Rational Function Solution: When A* — 4u = 0, we obtain

15
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v( )*a —i+ B 71+3—;Li
nl=a, 2" 4+ By —m: (28)

Where ;- 4,1, [*?312 im—lﬁjﬂ p= ila—lm’ , and B are arbitrary constants.
6
Case 3: Substituting Eq. (13) together with the general selution Eq. (5) mto Eq. (10), we obtain three types of travelling

wave solutions of Eq. (9):

Hyperbolic Function Solutions: When A* — 4 u > 0, we obtain

L \/12 —4u [Asinh%\llz —4un +Bcosh%\/lz —4p n}

V(n)__qlzﬁ 2 " 17 Y e

2 Acosha A 74,un+Bsth A“—4un
3 ,/1274;[[,45@%\[1274# n+Bcosh%\/7LZf4,u "J 3is (29)
H 1

+ —A+ +
m [Acosh%\/lz —4un +Bsinh%\[lz — 4L n} \/ﬁ

Where -, 4,4 2_[;312 _12#}, 4 and B are arbitrary constants.
2

-1

Various known results can be rediscovered, i1f 4 and B are taken as special values.

Trigonometric Function Solutions: When 4> — 4 ¢ < 0, we obtain
1 3 1 T )
) +6,uz‘ _)’Jrl e fAsmE\le,ufﬂL n+BcosE\f4,ufl n
vin)=z= — -
V2B 2 2 Acos%-\lﬁlu—ﬁ,zn+Bsin%\/4u—12n
1 2 1 3 (30)
. 3 m fAsmE\[zl,ufl n+BcosE\}4,u77L n . 34
V2P Acos%\lél,u—lzn+Bsin%\]4,u—xlzn V2p

1

Where -, 4,4 2_[;312 —12;1}5, 4 and B are arbitrary constants.
2

Various known results can be rediscovered, i1f 4 and B are taken as special values.
For Example:

+« If4=0butB+ 0we obtain

-1
ey B a2 a2 a2
_ 23 24 —R+J4” A cot‘/él'u2 A 7 +\’4#712 cotﬁmflrprl . (31)

+ IfB=0butAd + 0we obtain

16
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v(n)= +3; 2 17\/4;1—12%\/4#—12 ] (—4,u IE yau- A

V2B 7 2 2 2 ! ' (32)

s If4d#0,4>B, weobtain
-1

(33)
3 T | Jau-a? 3Ai
+ \!4 A° tan - +
VA [ S
Where . _,. -12
11 =tan i
Rational Function Solution: When A° — 4u = 0 we obtain
. -1
V(T?):"' 3 2u 7&+ B N 2B (34)
NEY 2 A+Bn A+Bn [
Where ,_ .44 2_[—7312 —12;1}5, 4 and B are arbitrary constants.
DISCUSSIONS Zayed [50] investigated the equation via the
basic (G /G)-expansion method. Xu [51] utilized an
Many researchers obtained traveling wave solutions elliptic equation method to solve tlus equation.

for the (3+1)-dimensional modified KdV-Zakharov- But, to the best of our knowledge, the (3+1)-dimensional
Kuznetsev equation by using different methods. modified KdV-Zakharov-Kuznetsev equation is not
For example, Naher et al. [29] applied the Exp-function studied by wusing the improved (G /5)-expansion
method for constructing traveling wave solutions. method.

Table 1: Comparison between Zayed [50] solutions and our solutions

Zayed [30] solutions Our solutions
i.1f4A » 0and B =0, solution Eq. (3.37) becomes: i If § = o and n = £, solution Eq. (15)becomes:
22 —4u 1[.2 a2 —4u 1f2
=43 [~ coth—JA° —4u . =43ia[————coth—4fA~ —4ué.
u(5) =3y oS HE w(€) 11’ oot ué
ii.IfA =0 and B + 0, solution Eq. (3.37) becomes: ii. If 0 = arand ) = £, solution Eq. (16)becomes:
2
w(Z)=+3 ‘”i tanh L JaZ . u () =¢sz1’%taﬂh%\/12 —aps.
o
iil. If 4 = 0 and B > A, solution Eq. (3.37) becomes: iii. If § = arand r = £, solution Eq. (17)becomes:
(&)= +3iJ ‘”“t h[ yAZ - 4#§+§0] (&)= +31J ‘“‘t h[ yAZ —ape +§0]
iv. If A = O and B = 0, solution Eq. (3.38) becomes: iv. If § = o and n = £, solution Eq. (19)becomes:
2 2
Cfdu-4 1 2 4u—A 1 2
=43 [ cot—Jdu — AL =430 [—————cot—afdp — A" &,
(&)= +3iy o co 5 U & u(&) 11‘ Y 2'\1 n I3
v. fA=0and B » 0, solution Eq. (3.38) becomes: v.If § = wand n) = £, solution Eq. (19)becomes:
_ a2 _ 42
u(Z)= J_rSiJ% tan%\jlhu —a%e u(€)= i311’% tan %\/4# “ate
o o
vi. If A2 — 44 = 0 solution Eq. (3.39) is: vi. If § = o and ) = &, solution Eq. (22)becomes:
B B
2(£)= f[A+B§J u()=* 7{A+B§]

17
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1
3
6
4
2
0
-2 2
-04 < -04

-02 T35 -02
0 D
# 0z 02 x
04 04
Fig. 1: Soliton solution for f=1, 1=4, u=5 Fig. 4: Periodic solution for =075 A=4, u=4,4=7,

B=1

Fig. 2: Periodic zolution for =05, 1=2, u=1,a,=1,
A=2,B=1

Fig. 3: Periodic solution for 5 =05, 1 =4, =35 Fig. 6: Periodic solution for 5=0.5,1=3, =4
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Fig. 7: Periodicsolutionfor 0=5,A=7, u=15,1n,=2

Beside this table, we obtain further new exact traveling
wave solution Eqs. (24), (25), (26), (27), (28), (30), (31), (32),
(33) and (34) in this article, which have not been reported
in the previous literature. When some arbitrary values
considered for these obtained new solutions are taken as
some special functions.

Graphical Representations of the Solutions:
The graphical illustrations of the szolutions are
depicted in the figures 1 to & with the aid of commercial
software Maple.

CONCLUSIONS

Some new exact traveling wave solutions of the
(3+1)-dimensional modified KdV-Zakharov-Kuznetsev
equation are constructed in this article by applying the
improved(G ¥G)-expansion method  The
solutions are presented in terms of the hyperbolic, the
trigonometric and the rational functions. It is significant
to disclose that some of our obtained solutions are in
good agreement with the published results and some are
new. Also, the solutions show that the application of the
method is trustworthy, straightforward and gives many
solutions. We hope this method can be more effectively
used to zolve many nonlinear partial differential equations
in applied mathematics, engineering sciences and
mathematical physics.
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