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Abstract: In this paper, effect of an axial force and shaft characteristics on the lateral natural frequencies of a
flexible rotating shaft with a cubic nonlinearity is investigated. Also this research performed for viscoelastic
Voigt-Kelvin rotating shaft. The shaft is assumed to be uniform, and the Euler-Bernoulli theory is used to model
the rotating shaft. Method of multiple scales is used to solve the dimensionless partial differential equation of
the motion. Linear and nonlinear lateral natural frequencies are plotted for various shaft parameters and effects
of these parameters and cubic nonlinearity is also discussed.
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INTRODUCTION Several methods are applied to solve nonlinear

Rotating shafts and rotors are important issue in very powerful and efficient method for solving partial
rotating machinery. Accurate consideration of dynamics differential equations especially vibration equations [14].
of them is necessary for successful design step. Bishop So we obtain linear and nonlinear frequencies and effect
[1] analyzed dynamic stability of rotating shafts, with of system characteristics and shaft parameters in
omission of the compressive force. Melanson and Zu [2] frequencies by means of multiple scales method.
studied the free vibrations and stability of internally
damped  rotating shafts with general boundary Equation of Motion: Fig. 1 shows an element of a flexible
conditions. Bokian [3] presented changes in the lateral rotating shaft. With considering nonlinear Euler-Bernoulli
natural frequency of Euler-Bernoulli beams under axial beam theory and equilibrium equations of force and
load with various boundary conditions. Chen and Ku [4] momentum, we can extract the equation of motion as
examined   the    dynamic   stability   of   a  cantilever mention below.
shaft-disk  system  subjected  to  a   periodic  axial force
by  the  finite  element  method and gave boundaries of
the  regions   of   dynamic   instability.  Shaw  and Shaw
[5]  considered    instabilities    and     bifurcations in
non-linear   rotating   shaft    made    of    viscoelastic
Voigt-Kelvin  material without compressive force.
Hosseini and Khadem [6] investigated free vibrations
analysis  of a rotating shaft with nonlinearities in
curvature and inertia.

In current research, lateral vibration of a flexible
uniform rotating shaft subjected to axial force is studied.
The Euler-Bernoulli theory is used to model the rotating
shaft and the multiple scales method is applied to the
partial  differential equation and solved nonlinear
equation of motion. Fig. 1: An element of flexible rotating shaft

equation in literatures [7-13]. Multiple scales method is
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By writing equilibrium force relation in Y direction, it (8)
is obtained:

To obtain an analytical solution for this case, we use
(1) the method of multiple scales in the following section.

Writing equilibrium momentum relation around of c: the multiple scales method to analyze the first and second

method directly to the partial differential equation of
(2) motion derived in past section, i.e. Eq. (8).

And writing suitable approximation obtained from Taylor
expansion for sin function and note that the power terms (9)
of d  are negligible, as follows:

(3) respectively and  is a small dimensionless parameter.

(10)
(4)

By assuming uniform properties, internal damping
(Voigt-Kelvin model) and the  plane  section  remains Substituting Eqs. (9, 10) into Eq. (8) and then
plain, the bending moments due to the internal forces in equating the coefficients of  and , we arrive at
x-y plane,  respectively,   is  written  by  following  usual
Euler-Bernoulli beam theory as

(5)

By using   Eqs.    (1-5)    and   with  considering
Voigt-Kelvin internal damping in the shaft and constant The unperturbed Eq. (11) is the linear governing
section area along the shaft and simplifying the obtained equation corresponding to the free vibration of flexible
equation, we have: rotating shaft. The perturbed Eq. (12) can solved based on

(6) Unperturbed Solution: The solution to Eq. (11) can be

To analyze free vibration  of  the  system, we
consider f(X,t)=0. By substituting the solution into Eq. (11), zero order

For simplifying the analysis, we define the following characteristic equation can be written as:
dimensionless system variables:

(7)

One can obtain nonlinear equation of motion as follows: Where

Method of Multiple Scales [15]: In this section, we use

resonances of the system. Here, we apply multiple scales

We expand w in the form:

Where T =  and T =  are fast and slow time scales,0 1

Also we have

0 1

(11)

(12)

the unperturbed solution.

written in a complex form as

w (x, ) = Ae  = Ae (13)0
is +imx isTo+imx

m +i sm  + Pkm  –s  = 0 (14)4 4 2 2

This algebraic equation has solution of the form

m = ±m , m = ±im (15)f e
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Integrating over the length of the shaft, gives a
(16) complex ordinary differential equation with respect to

(17)

Then the solution to Eq. (11) can be expressed as

w (x, ) = (x)e (18)0
is

Where the mode function is in the form

(19) and the phase angle of the nonlinear free vibration of the

The boundary conditions corresponding to the Substituting Eq. (28) into Eq. (27) and separating the
assumed pined-pined supports are specified at x=0 and resulting equation into real and imaginary parts gives
1 as follows:

W(0, ) = W(1, ) = 0
M(0, ) = M(1, ) = 0 (20) (30)

Substituting Eq. (19) into Eq. (20) yields

sin(m ) = 0 (21)f

The corresponding lateral natural frequencies are (32)
determined from Eqs. (16, 21) and are

(22) Substituting Eqs. (31, 32) into Eq. (28) and then inserting

(23) frequencies of the nonlinear vibration of the shaft as

Perturbed Solution: To solve Eq. (12) we may use the
unperturbed solution. (33)

(24) The nonlinear lateral natural frequencies are

Substituting Eq. (24) into Eq. (12) yields parameter and amplitude.

consider effect of spinning speed on the lateral natural
(25) frequency. This parameter effects on natural frequency in

Where CC stands for complex conjugates and NST (34)
denotes not secular terms.

( ) are poisson's ratio and mass density of the shaft.

(26) effect of spinning speed to the natural frequency.

A (T )as followsn 1

(27)

Express the solution to Eq. (27) in polar form, i.e.

(28)

Where A (T ) and (T ) are respectively the amplituden 1 n 1

shaft.

(29)

Integrating Eq. (29) and Eq. (30) yields

(31)

the result into Eq. (24), gives the n  lateral naturalth

dependent on the axial force, shaft characteristics, small

In order to obtain final response, it is essential to

form of an axial force, which it is [16].

Where (R) is outer radius, ( ) is spinning speed, ( ) and

(P ) is pressure caused by spinning speed, which transmits
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Table 1: Nominal values of the parameters in the numerical example

Elasticity modulus (E) 2.07×10 (pa)11

Mass density ( ) 7800(kg/m)

poisson's ratio ( ) 0.33

RESULTS AND DISCUSSION

In this section, we consider numerical examples to
examine the effect of axial forces on the lateral natural
frequencies of a nonlinear flexible rotating shaft.

The following fixed parameter values were chosen as
For  performing   calculation   and   plotting  graphs

via   Matlab    Software,    effect    of    spinning   speed
on    the  axially      force     and     lateral    frequencies
to exert.

In Figs.  (2-5),  the  linear  and  nonlinear lateral
natural    frequencies, ( )       and ( )   are
plotted   versus     the     non-dimensional     axial   force
P,  fore  the  first  two  modes. The  Figures  are  plotted
for  different  values of amplitude ( ).

It  is   seen   that   the   lateral  natural frequencies are
ascending with respect to the axial force.

As expected, the increase of axial force leads to lateral
natural frequencies and effect of nonlinear term
increasing.

If values of amplitude increase, the curves show
stronger effects of nonlinearity. Therefore the nonlinear
analysis is necessary for such systems.

Figs.  (6-9), illustrate changes of non-dimensional
axial force and shaft characteristics on lateral natural
frequencies.

As expected, when the non-dimensional axial force
increases, lateral natural frequencies and effect of
nonlinearity both increase.

In    addition,       it       is       seen      that    if   the
non-dimensional       shaft          characteristics (k)
values  become  large,  effect   of  nonlinear term,
approach a large value.

It is note that the dimensionless shaft characteristics
(k), defined as

(35)

According to Eqs. (33) and (35), increase of square
(L/R)  cause  to  increase  lateral natural frequency.

The effect  of   axial   force   and  nonlinearity  for two
modes show similar behaviors, approximately.

Fig. 2: Change of first lateral natural frequency versus
axial force for a pin-pin shaft for 

Fig. 3: Change of first lateral natural frequency versus
axial force for a pin-pin shaft for 

Fig. 4: Change of second lateral natural frequency versus
axial force for a pin-pin shaft for 
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Fig. 5: Change of second lateral natural frequency versus Fig. 8: Change of second lateral natural frequency versus
axial force for a pin-pin shaft for axial force for a pin-pin shaft for k = 1000

Fig. 6: Change of first lateral natural frequency versus axial force for a pin-pin shaft for k = 2000
axial force for a pin-pin shaft for k = 1000

Fig. 7: Change of first lateral natural frequency versus axial force and shaft characteristics for a pin-pin
axial force for a pin-pin shaft for k = 2000 shaft for =0.001, 0.070 and 0.100.

Fig. 9: Change of second lateral natural frequency versus

Fig. 10: Change of first lateral natural frequency versus
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Fig. 11: Change of second lateral natural frequency 5. Shaw, J. and S.W. Shaw, 1989. Instabilities and
versus axial force and shaft characteristics for a bifurcations in a rotating shaft. J. Sound and
pin-pin shaft for =0.001, 0.010 and 0.015. Vibration, 132: 227-244.

Figs. (10) and (11) show changes of first and second vibrations analysis of a rotating shaft with
lateral natural frequency of shaft versus dimensionless nonlinearities in curvature and inertia. Mechanism
axial force (P) and shaft characteristic (k). Also, below and Machine Theory, 44: 272-288.
curves in pair curves of Figs. (10) and (11) are according 7. Fereidoon,  A.,   M.  Ghadimi,  A.  Barari,  H.D.  Kaliji
to linear solution and upper curves in pair curves are and G. Domairry, 2011. Nonlinear vibration of
pertain nonlinear solution. oscillation systems using frequency amplitude

CONCLUSION DOI:10.3233/SAV20100633.

The effect of axial forces on the lateral natural 2010. Analytical Solutions for Investigating Free
frequencies of a  flexible  rotating  shaft  was  analyzed. Vibration of Cantilever Beams. World Applied
The shaft was assumed to be uniform and the nonlinear Sciences J., 9(Special Issue of Applied Math): 44-48.
Euler-Bernoulli theory was used. In the general 9. Farrokhzad,    F.,      P.      Mowlaee,      A.    Barari,
formulation  of  the  governing equation of motion, A.J. Choobbasti and H.D. Kaliji, 2011. Analytical
internal viscoelastic  dampings  were included and a investigation of beam deformation equation using
circular  shaft  rotating  at  a  constant speed was perturbation, homotopy perturbation, variational
admitted.  Nonlinear  partial  differential equation of iteration and optimal homotopy asymptotic methods.
motion  was  derived by considering equilibrium Carpathian J. Mathematics, 27(1): 51-63.
equations  for  an  element  of  the  shaft.   The  ends of 10. A. Barari, H.D. Kaliji,  M.  Ghadimi and  G.  Domairry,
the  shaft  were  pined-pined   and   multiple  scales 2011. Non-linear vibration of Euler-Bernoulli beams.
method was applied directly to the partial differential Latin American J. Solids and Structures, 8(2): 139-148.
equation of motion. Two linear and nonlinear lateral 11. Ghadimi, M., H.D. Kaliji and A. Barari, XXXX.
natural  frequencies    were    a  nalyzed.    In    addition, Analytical Solutions to Nonlinear Mechanical
the   natural    frequencies    are     plotted   as  functions Oscillation    Problems.      J.     Vibroengineering,
of  damping  coefficients,  shaft   characteristics,  axial 13(2): 133-143.
force and amplitude.  Also,  lateral  natural  frequencies 12. Syed Tauseef Mohyud-Din, Ahmet Yildirim and
increases by applying tension axial loading and decreases M.M. Hosseini, 2011. Homotopy Perturbation
by applying   compression   axial  loading  at  the  ends  of Method for Fractional Differential Equations. World
the rotating shaft. Applied Sci. J., 12(12): 2180-2183.
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