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Abstract: In this paper, flow around river hydraulic structures has been simulated numerically using an efficient
coupled 2DH-3D hydrodynamic model. In practical studies, 2DH numerical models are broadly employed to
simulate the free surface flows; however, application of 3D models is unavoidable in some cases such as flow
around river hydraulic structures, due to the variation of flow characteristics in depth. In this research, a reach
of a wide river channel containing some hydraulic structures has been considered. This reach has been
simulated by a coupled 2DH-3D system that models the area surrounding the hydraulic structures three
dimensionally and the rest of reach, two dimensionally. The proposed coupled system is a combination of a
2DH model and a full 3D one. Solution domains in the 2DH and 3D spaces are covered using triangular and
prismatic elements, respectively. Both models implement the finite volume fractional step method to discretize
the main equations. Comparison of the results of flow modeling around a bridge pier and a spur dike (typical
river hydraulic structures), using the 3D and the coupled models in the same computational domain, with the
experimental data shows good precision and considerable efficiency of the proposed coupled model.

Key words: Coupled model  Non-hydrostatic free surface flow  River hydraulic structures  Fractional step
method  Unstructured mesh  Finite volume

INTRODUCTION out recently in order to describe and model the flow

Many  researchers  have  been conducted Tingsanchali et al. [2], Molls and Chaudhry [3] and Molls
numerically to investigate the flow behavior in rivers et al. [4] have implemented 2DH models. The main part of
during last decades. River flows can be simulated by 1D, river flows can be predicted quite satisfactorily by 2DH
2D and 3D models. One dimensional models represent models, but the depth variation and secondary flow
flow in channel by averaging the equations over a cross resulting from hydraulic structures is difficult to simulate
section, providing average flow velocity and water by these type of models [5]. Therefore 3D numerical model
elevation in each channel section. Horizontal two needs to be considered for simulation purposes. In
dimensional flow models typically simulate flow in a compare with 3D models, the 2DH models are best known
channel by averaging governing equations over the for their Low computational cost. 
depth, giving horizontal components of velocity and Flow in open channel particularly around hydraulic
water depth in each element. Three dimensional models structures, have been also simulated by applying 3D
solve cell averaged governing equations and provide models. Mayerle et al. [6],  Ouillon  and  Dartus  [7],
pressure and three velocity components within each Tseng et al. [8], Kamil et al. [9], Kimura and Hosoda [10],
element. Zhou [11], Salaheldin et al. [12], Roulund et al. [13],

Bridge piers, bridge abutments and spur dikes are Nagata et al. [14], Xuelin et al. [15], Xuelin [16], MacCoy
among most constructed hydraulic structures. With the et al. [17] and Yazdi et al. [18] are among the researchers
development of two and three dimensional numerical who have applied 3D models for simulating flow behavior
modeling techniques, several studies have been carried around river structures.

patterns  around   hydraulic   structures.   Chen  and Li [1],
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One of the most important assumptions in the
development and application of three dimensional flow
models is related to pressure term. In this regard pressure
distribution can be assumed to be hydrostatic or non-
hydrostatic. Due to the presence of a strong vertical
component of the flow in the upstream face of the
hydraulic structures, the assumption of hydrostatic
pressure distribution is not valid. Therefore, it is
necessary to simulate flow patterns near the hydraulic
structures using full hydrodynamic 3D models.

To simulate a long river which categorized as a large Fig. 1: Schematic view of Far and Near Fields in the
water body, it is necessary to use an accurate numerical vicinity of river hydraulic structures.
model with low computational cost. In recent years,
coupled flow models have become more popular including (1)
coupling of 1D-2D and 2D-3D models. In the coupled
models, the study area has been divided into two part and
different modeling procedures applied according to the
important hydrodynamic phenomena existing in each part. (2)
This different regions should be interact with each other
in order to have an accurate prediction of flow
characteristics. Miglio et al. [19], Fang-li et al. [20] and (3)
Mahjoob and Ghiassi [21] have applied coupled 1D-2D
models for channel flow simulation. Few numerical studies where h (= -z ) is the water depth;  is the free surface
have been reported in the literature to couple 2DH and 3D elevation; z  is the bed elevation; u and v are the depth
models mainly focused on marine environment. Namin and averaged velocity components in the x and y directions,
Falconer [22] proposed a 2DH-3D coupled model to respectively; p (=uh) and q (=vh) are the mass fluxes in
facilitate positioning the 3D area in a portion of a larger the x and y directions, respectively; g is the gravitational
2DH domain and then solved the governing equations of acceleration;  is the fluid density;  and  are
hydrodynamic simultaneously. Zounemat-Kermani and respectively the bed shear stresses in x and y directions
Sabbagh-Yazdi [23] developed a 2D-3D coupled model to and  is the eddy viscosity. Although the bed shear
simulate deep currents in a marine system. 

Figure 1 shows a reach of a river with placement of
hydraulic structures. In the current study, the part with
the hydraulic structures is called the “Near Field” and the
rest of the reach the “Far Field”. The flow behavior in the
Far Field has been considered mostly well mixed and
therefore can be modeled two-dimensionally while the one
in the Near Field should be modeled three dimensionally.
A combination of 2DH model for far field of river domain
and full 3D model for near field of hydraulic structures will
result in accurate and efficient computations. The purpose
of this research is to present an efficient coupled 2DH-3D
system for flow simulation around hydraulic structures
located in long rivers.

Governing Equations
DH Depth Averaged Equations: Integrating the 3D RANS
equations from the river bed to the free surface and
neglecting the Coriolis and wind forces, the shallow water
equations can be derived as

b

b

bx by

stress is a function of the near bed flow and not the mean
flow, the following relations are applied adopted from the
quadratic friction law

(4)

(5)

where C  is the dimensionless friction coefficient whichf

can be expressed in terms of the Chezy coefficient C,
Manning coefficient n or bed roughness height k  ass

(6)

In the present work, Smagorinsky model is employed to
determine the eddy viscosity

(7)
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where C  is the Smagorinsky constant varying from 0.1 to The horizontal eddy viscosity, in this research, iss

0.8;  is the magnitude of  is the

length scale for the grid filter and  is the filtered strain-

rate tensor ().

Boundary Conditions of 2dh Models: Boundary
conditions commonly considered in 2DH models, include
those of the inlet, the outlet and the solid wall. At the inlet
boundary, the flow rate must be specified (i.e. p=p , q=0).0

The free surface elevation, , would be specified at the
outlet boundary. At solid walls, both free slip and no slip
boundary conditions may be considered. At no slip
conditions, all velocity components are set to zero while
at the free slip conditions, just the normal component of
the velocity is set to zero. In this study, depending on the
flow nature, application of both conditions is possible.

3D RANS Equations: The governing hydrodynamic
equations are 3D Navier Stokes equations with the
Boussinesq approximation and the incompressible
continuity equation. The pressure P is divided into two
parts- "hydrostatic pressure" (- gz) and "excess
pressure" ( p*). Therefore we have [24, 25]

(8)

(9)

(10)

(11)

where u, v and w are the Cartesian components of velocity
in the x, y and z directions, respectively (z-axis is in the
vertical direction and positive up); t is the time; g is the
gravitational acceleration and  and  represent the

horizontal and vertical eddy  viscosities,  respectively.

determined by Smagorinsky model as mentioned in the
previous section, while the vertical eddy viscosity is
computed by 1D k-  model which uses transport equation
for turbulent kinetic energy, k and dissipation of turbulent
kinetic energy, , in the vertical direction. The vertical
eddy viscosity from 1D k-  model is as follows

(12)

In the above expression, C  is an empiricalµ

coefficient, which is usually a constant equal to 0.09 and
k and  are computed from the following transport
equations.

(13)

(14)

where  is the production term due

to the velocity shear; ,  and  are the empiricalk I

parameters with constant values equal to 1, 1.3, 1.44 and
1.92, respectively.

Boundary Conditions of 3D Models: Boundary conditions
in 3D flow models include those of the inlet, the outlet, the
solid walls and the free surface. Velocity distribution in
vertical direction used at the inlet is either measured in the
laboratory or calculated analytically. At the outlet, the
"known water elevation" is the prevailing boundary
condition, here it changes to "known excess pressure".
Both the free slip and the no slip boundary conditions are
used for the channel banks in the variant situations. To
find the velocity parallel to the channel bed at the first
computational node, the standard wall function law is
used.

(15)

where U  is the resultant velocity parallel to the bed at ther

first computational node;  is the resultant

friction velocity;  is Von Karman constant equal to 0.41;

E  is  the  roughness  parameter;  is   the  non
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dimensional wall distance;  is the bed shear stress;  isb

density; Y is the normal distance to the wall; and is the

kinematic viscosity. 
The major boundary condition along the free surface

is the known air pressure. Equating the total pressure to
the air pressure acting on the surface (i.e.  z = ) gives the
excess pressure along the free surface as:

(16)

where P  is the atmospheric pressure (considered zeroa

here) [23]. The kinematic condition on the free surface,
that describes the movement of the water elevation, can
be written as

(17)

where the subscript s represents the variables located on
the surface. In this non-hydrostatic model, the free
surface elevation is determined, assuming hydrostatic
pressure at top layer cells.

Grid Layout
Grid Layout for the 2DH Model: Small mesh size grids
help achieving more precise results in regions of particular
interest (the Near Field in our case). In such regions, it is
necessary that the computational domain has a longer
length than that of the region in question. This is usually
either to prevent the undesirable reflections from the
boundaries near the model region or to connect the region
to the closest known boundary, which may be located
very far from the Near Field (hydraulic structures). But,
using a fine grid for such a long region will make the
computations inefficient. One approach to solve this
problem is using an unstructured mesh which enables a
finer grid around the Near Field and a coarser one in the
Far Field. Since rivers and hydraulic structures have
complex geometries and according to what was mentioned
above, an unstructured triangular mesh is implemented in
the present work to cover the solution domain (Figure 2).

Grid Layout for the 3D Model: To discritize the 3D
computational domain in the horizontal plane, the same
2DH unstructured triangular mesh is used. In the vertical
direction, the structured grid is employed so as to divide
the domain into prisms whose horizontal faces are
triangles (meaning the same x and y for each vertex in the
vertical direction). This kind of grid layout can fit into
complex geometries and makes local mesh refinements
possible (Figure 3).

Fig. 2: Grid layout of the 2DH calculations

Fig. 3: Grid layout of the 3D calculations (unstructured
triangular grids in the horizontal planes and
structured grids in the vertical directions).

Fig. 4: The control volume for mesh vertex layout (a) and
position of r at side ij of the triangular mesh (b)

Numerical Scheme: This section explains the numerical
scheme for the solution of 2DH and 3D RANS equations.
Equations (1)-(3) and (8)-(11) are solved using the finite
volume method.

Numerical Techniques for 2DH Calculations: As
mentioned earlier, an unstructured triangular mesh is
deployed to discretize the problem domain. Here, using
the cell vertex scheme, the centers of the circum-circles of
the same elements are connected to construct a control
volume for every vertex. In order to determine the
components of vector variables normal to each edge of
the control volume boundary, the local coordinates and
 are defined (Figure 4-a).
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The present model uses a finite volume fractional Equations 24 and 25 can be rewritten as
step method to solve the governing equations in three
steps. The first step, which is a double stage one, solves
the advection and diffusion terms in the momentum
equations to find the intermediate mass fluxes. In the first
stage, p and q are advected using the mass flux field at the
previous time step n, to determine the first new
intermediate mass flux fields p  and q  as *1 *1

(18)

(19)

The above advection equations are solved using the
Fromm second order explicit scheme.

In the second stage, using p  and q  and the second*1 *1

order explicit scheme, the diffusion terms are calculated to
obtain the second intermediate mass fluxes p  and q as*2 *2

(20)

(21)

Special techniques for solving advection-diffusion
equations on unstructured triangular meshes can be
found in Namin et al. [27].

The second step uses the semi implicit scheme and
solves the friction terms (bed shear stresses) as

(22)

(23)

The third step solves the continuity equation and the
remaining terms of the momentum equations
simultaneously as

(24)

(25)

(26)

(27)

wher  is the mass flux component

normal to each edge of the control volume boundary;

and  are the averages of p and q at the endpoints of

each side of the triangular mesh (i.e.

 ) and  is the angle between the

local coordinates and the Cartesian system (Figure 4-b).
The summation of r along all the edges of the control
volume at each node causes the variation of water surface
elevation inside that node as

(28)

where Area(i) is area of the control volume surrounding
the corresponding node, k is the number of edges of the
control volume at each node and s  is the length of them

m  edge. Equation (28) replaces equation (26). Now,th

Equations (27) and (28) can be discretized as

(29)

(30)

Substituting Equation 29 into Equation 30 will result
in an equation in which the water surface elevation at
each node at time step n+1 ( ) is a function of its

surrounding nodes at the same time step. This will end up
in n equations with n unknowns (n being the number of
nodes in the computational domain). These equations are
solved in the present work using an iterative method.
Determining  for all nodes, p  and q  aren+1 n+1

calculated using Gauss's theorem and Equations 24 and
25.

Numerical Techniques for 3d Calculations: As
mentioned in Section 3-2, the grid layout for 3D
calculations is an unstructured triangular grid in the
horizontal plane and a structured one in the vertical
direction. P , u, v and w are defined at staggered locations*

as shown in Figure 5.
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Fig. 5: Definition of variables in a control volume.

In this study, similar to 2DH calculations, a finite
volume fractional step method is used to solve the
governing equations. Solution procedure consists of two
main steps. The advection and diffusion terms of the
momentum Equations (8)-(10) are solved in step one. In
stage one of this step, the velocity field at the previous
time step n is used to advect velocities to determine the
new intermediate velocity fields u , v  and w as* * *

(31)

(32)

(33)

The velocities are advected in the horizontal plane
using the Fromm second order explicit scheme while the
Crank-Nicholson implicit scheme is deployed in the
vertical direction. In the second stage, using u , v  and w ,* * *

the diffusion terms are calculated to obtain the second
intermediate velocities u , v  and w , as** ** **

(34)

(35)

(36)

The above diffusion equations are solved in the
horizontal plane using the second order  explicit  scheme

and in the vertical direction using Crank-Nicholson
implicit scheme.

In the second step, the continuity equation and the
remaining term in each momentum equation are solved
simultaneously as

(37)

(38)

(39)

(40)

Approximation of X and Y Derivatives: The x and y
derivatives of the horizontal velocities (u, v) at the center
of P  control volume are determined using the Gauss's*

divergence theorem. According to Figure 6 which
displays the horizontal view of the control volume, we can
write

(41)

(42)

(43)

(44)

where  nd is  the  number  of  edges  of  the control
volume of each node in plan; x and y  are the x and ym m

co-ordinate differences of the endpoints of the m  edgeth

(i.e. a, b);   and   refer to the average values of

   and  on the m  edge (i.e.th

).

As shown in Equations 41 and 43, the values of un+1

and  v   at  each  node  are defined in terms of P  at then+1 *
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Fig. 6: Horizontal view of a control volume

Fig. 7: Side view of w and P   control volumes*

same node (j) and its surrounding nodes (j -j ) at the new1 6

time step (n+1).

Approximation of the Z Derivative: Figure 7 shows the

side view of w and  control volumes. Considering

(45)

The z derivative of the vertical velocity (w) at the
center of P  control volume (Figure 7-b) is as*

(46)

Solution: As mentioned earlier, the horizontal and vertical
velocities are expressed as functions of the excess
pressure. Substituting these velocities in the continuity

equation will result in a relation in which the excess
pressure at each node at time step n+1 ( ) is a

function of the upper, the lower and the surrounding
nodes (in plan) at the same time step. This will end up in
n equations with n unknowns (n being the number of
nodes in the computational domain). These equations are
solved in the present work using the line iterative method.
Considering time step n+1 for the computational nodes in
each column in the z direction and time step n for the
other nodes, will result in a tri-diagonal matrix system with
P  s as the unknown which can be solved directly.*

Determining P  s for all columns in the computational*

domain, they are replaced with those in the previous
iteration. The iterations will continue until the difference
between the P  s in the two successive steps becomes*

sufficiently small. Having found the excess pressures, the
velocities can be calculated using Equations 41, 43 and 45.

Coupled Model: Since the 3D domain (the Near Field) is
considered in the present research as a part of a vaster
2DH area (the Far Field), first the whole computational
domain is discretized two dimensionally (according to
section 3-1). Then, in the 2DH part, which is to be
modeled three dimensionally, the same discretization is
extended in depth (according to section 3-2). Therefore,
the plan of the 3D mesh will coincide with that of the 2DH
mesh (Figure 8). This will facilitate the transferring of the
parameters calculated from the 2DH model to the 3D
model. Now, in order to define a 3D region in a 2DH area,
it is necessary to determine the interfacial boundaries at
the upstream and the downstream of the 3D region. How
the positions of these boundaries are defined will come in
the next section.

In this study, the steady state problems have been
considered. Hence, in the coupled model, the 2DH
equations are first solved for the whole computational
domain to converge to the steady state. At the interfacial
boundaries, the simulation results of the 2DH calculations
are conveyed to the 3D model. For this purpose, the depth
averaged horizontal velocities should be distributed in the
vertical direction. There are several formulae to distribute
the velocity over the flow depth. Logarithmic equations
which assume velocity as a logarithmic function over the
flow depth are the most frequently used ones. In this
research, the following equation, proposed by Van Rijn
[28] is used

(47)



World Appl. Sci. J., 15 (1): 63-77, 2011

70

Fig. 8: Grid layout for the coupled model above surface of water, was 3mm thick and 152mm long.

where z is the vertical distance from the bed, h is the total were 0.189m and 0.253m/s, respectively. 
depth and z  = 0.033.k  (for rough flow regime). To simulate their flow conditions numerically, we0 s

The horizontal velocities, distributed over the flow considered a 20m×.9m computational domain for which
depth, at the upstream interface and the water surface the upstream and downstream boundaries were located
elevations at the downstream interface, obtained from the respectively 3m and 17m away from the spur dike.
2DH model, are assumed to be constant during the Discretization of this domain resulted in 17549 triangles.
solution of the 3D model. To increase the computational Flow flux at the upstream boundary and the water depth
efficiency, the output results of the 2DH model (water at the downstream boundary were 0.047817m /s and
surface elevation and horizontal velocities distributed 0.189m, respectively. Free slip boundary condition was
over the flow depth) at nodes located in the 3D domain, applied at the channel walls. The calculated resultant
are used as the initial guesses (initial conditions) for the velocity profiles at y/b=3 and y/b=4 (b being the length
3D model. After determining the boundary and the initial of the spur dike), normalized by U =0.253m/s, are shown
conditions of the 3D model, the flow in the Near Field in Figure 9. Comparison of the numerical results and the
region is simulated by the 3D model using the procedure experimental data shows good agreement. 
explained in section 4-2. 

Location  of  the   Interfacial   Boundaries:  In the Models: In order to validate the 3D flow model and verify
coupled  model,  it  is  necessary  to  determine  the the capability, accuracy and efficiency of the proposed
position  of  interfacial  boundaries   at   the   upstream coupled model, both models were used to simulate flow
and the downstream of the 3D region to define the 2DH around a spur dike and a bridge pier which are considered
and 3D areas. As mentioned, the main objective of this to be typical river hydraulic structures. For each structure
research is  the  accurate  prediction  of  flow  around one experimental test case was carried out, the parameters
river hydraulic structures; so, the distance from the of which are summarized in Table 1. 
interfacial  boundaries  to  the  flow  inlet   and  outlet To compare the efficiency and accuracy of the
(2DH boundaries) should be enough to minimize coupled 2DH-3D model with those of the 3D model, the
undesirable reflections from these boundaries. same computational domain was used for both models.
Furthermore, the interfacial boundaries should be far
enough from the river hydraulic structures so that the Flow Simulation Around a Cylindrical Pier: For the first
shallow water conditions prevail at the interfacial test case of the 3D and the coupled 2DH-3D models, the
boundaries. In other words, it is more desirable that the experimental results obtained by Ahmed and Rajaratnam
interfacial boundaries are located in the places where [30] (Experiment C2R) were considered for the sake of
vertical velocities are small and, therefore, bathymetry comparison. Their experiments were conducted in a 20m
variations are smooth. long and 1.22m wide flume; a 0.089m diameter cylinder was

Model Validation: Validation of the developed 2DH, 3D
and coupled models are dealt with in this section. For the
2DH model we consider one test case and for the other
models, two test cases.

Validation of the 2DH Flow Model: To validate the 2DH
model, the results of the A1 test carried out by Rajaratnam
and Nwachukwu [29] on flows near a spur dike are used.
They used a thin aluminum plate as a spur dike fixed
perpendicular to the side of a long rectangular channel.
Their flume had a length of 37m, a width of 0.9m, a depth
of 0.76m, smooth bed and sides. The spur dike, projecting

H and U  (water depth and flow velocity) in the A1 test0

2

0

Validation of the 3D and the Coupled 2DH-3D Flow

Table 1: Geometric parameters and tests conditions
Flume dimensions Flow depth Mean approaching Dimensions of structure

Test case Structure (length/width) (m) flow velocity (m/s) (length/thickness or diameter)
1 Cylindrical pier 20 m/1.22 m 0.182 0.2927 0.089 m
2 Spur dike 32.4 m/2.5 m 0.23 0.3478 0.25 m/0.05 m
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Fig. 9: Computed resultant velocity profiles (solid lines) and experimental data (closed circles) at (a) y/b=3 and (b)
y/b=4 (x/b=0 is the spur dike position).

Fig. 10: Plan view of the whole computational domain and positions of the interfacial boundaries (a) and grid around
cylindrical pier in the x-y plane (b)

Fig. 11: Vertical distribution of the streamwise velocity (u) obtained from numerical models and experiments (x/r =0 is the
pier position).
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Fig. 12: Vertical distribution of the vertical velocity (w) obtained from numerical models and experiments 

Figure 13. Points where velocities were measured.

Fig. 14: Plan view of the whole computational domain and positions of the interfacial boundaries
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Fig. 15: Comparisons of numerical results of the 3D and the coupled 2DH-3D models (solid and dashed curves) for
streamwise velocity profiles with the experimental data (closed circles) at locations A1, A3, B1, B3, C1 and C3

used as a model for the bridge pier. The approaching flow at 1m upstream and downstream of the pier as shown in
velocity and the water depth were 0.2927 m/s and 0.182m, Figure 10-a. In order to investigate the flow details around
respectively. the pier, a finer mesh was used (Figure 10-b).

Our computational domain was 5m by 1.22m and the The 3D and the coupled 2DH-3D model results were
pier was located in the middle. First, the whole compared with the experimental data of the vertical
computational domain was simulated by the 3D elements distribution of the streamwise velocity (u) at different
and the results were compared with the experimental data. locations upstream of the pier as shown in Figure 11; the
Then the 2DH-3D coupled model was used for the same comparison shows good agreement.
computational domain. In the coupled model, the area The vertical distribution of the vertical velocities (w)
around  the  pier  was  simulated  by 3D modeling and the upstream of the pier, obtained from the experiments and
rest of the domain by the 2DH model. According to the the models, were compared (Figure 12). They are in great
flow conditions, the interfacial boundaries were assumed agreement.
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Fig. 16: Comparisons of numerical results of the 3D and the coupled 2DH-3D models (solid and dashed curves) for
transverse velocity profiles with the experimental data (closed circles) at points A1, A3, B1, B3, C1 and C3

Figures 11 and 12 clearly show that the difference (reported by Muller and Schwarze [31]). This experiment
between the results of the 3D flow simulation for the was carried out in a 32.4m by 2.5m channel having smooth
whole computational domain and the coupled 2DH-3D vertical walls. The flow rate and the water depth were
model is very small. However, the important point is that 0.2m /s and 0.23m respectively. The spur dike was 0.25m
the computation time needed for the coupled model is long (along channel width) and 0.05m thick. Points where
only about 6% of that needed for the 3D modeling of the velocities were measured are shown in Figure 13. Mayerle
whole computational domain. et al. [6] too applied these experimental data to verify their

Flow Simulation Around Non-Submerged Spur Dike: For In this case, our computational domain was
the second test case, results of the 3D and the coupled considered to be 15m by 2.5m and the spur dike was
models were compared with those of one of the located 5m downstream of the inlet. Similar to the previous
experiments done at Franzius Institute in Hannover test  case,  first  the  whole  computational   domain   was

3

numerical model. 
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simulated by 3D elements and the results were compared areas, the simulation results of the 2DH calculations have
with the experimental data. Then, the 2DH-3D coupled been transferred to the 3D model using proper relations.
model was implemented for the same computational The results of the 2DH, the 3D and the coupled 2DH-3D
domain. models have been verified by several test cases with good

For the coupled model, the area around the spur dike satisfaction.
was simulated using 3D modeling and the rest by using
the 2DH model. Interfacial boundaries were assumed at 2m The proposed coupled model provides several
and 5m upstream and downstream of the spur dike, advantages as follows:
respectively (Figure 14).

Vertical distribution of the streamwise and transverse It can considerably reduce the computational time
velocities at points A1, A3, B1, B3, C1 and C3, obtained and increase the computational efficiency (time
from the 3D and the coupled models, have been compared consumed by this model to simulate flow around two
with those of the experiment as shown in Figures 15 and typical river hydraulic structures was only about 7%
16. These Figures show that the measured and the of that taken by normal 3D for the whole
computed velocities from the 3D and the coupled 2DH-3D computational domain).
models agree satisfactorily. It can adopt complicated boundaries and be refined

It is worth mentioning that the computational time of in areas where more resolution is necessary because
the proposed coupled 2DH-3D flow model is only 8% of it takes advantage of an unstructured grid to solve
that of the normal 3D model used for the whole domain. the numerical algorithms.
This means that the proposed model reduces the In the present non-hydrostatic 3D model, the
computational time considerably. elevation of the free surface is defined by an

Figure 15. Comparisons of numerical results of the 3D assumed hydrostatic pressure at the top layer cells;
and the coupled 2DH-3D models (solid and dashed hence, the variations of the free surface elevation can
curves)  for  streamwise  velocity  profiles   with  the occur only in that layer. While converging to the
experimental data (closed circles) at locations A1, A3, B1, steady state, the difference between the maximum
B3, C1 and C3 and the minimum free surface elevations at

Figure 16. Comparisons of numerical results of the 3D successive time steps may be larger than that in the
and the coupled 2DH-3D models (solid and dashed final results. This may cause formation of a thick
curves)     for     transverse     velocity     profiles     with layer at the top cells– hence a reduction in accuracy.
the experimental data (closed circles) at points A1, A3, B1, By using the water surface elevation, obtained from
B3, C1 and C3 the 2DH model, as the initial guess for the 3D portion

CONCLUSIONS can be reduced noticeably.

To simulate flow around river hydraulic structures, a areas located far from the river hydraulic structures,
coupled 2DH-3D numerical model has been proposed in the proposed coupled 2DH-3D model is considered
this research. 2DH models can simulate the overall pattern quite suitable for large scale modeling.
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