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Abstract: This paper investigates the profitability of a simple and very commeon technical trading rule applied
to the General Tndex of the Madrid Stock Market. The optimal trading rule parameter values are found using a
genetic algorithim. The results suggest that, for reasonable trading costs, the technical trading rule is always

superior to a risk-adjusted buy-and-hold strategy.
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INTRODUCTION

Technical analysis 1s aimed at devising trading rules
capable of exploiting fluctuation on the financial markets.
Recent results indicate that the market timing strategy
may be a viable alternative to the buy-and-hold strategy,
where the assets are kept over a relatively long time
period. The market timing approach is more dynamic and
focuses on market fluctuations. The trading rules, through
techmical analysis, are devised to generate appropriate
buying and selling signals.

The first results, using techmical analysis in various
financial domains, in the 1960s and 1970s supported the
“efficient market hypothesis’, which implies that there
should not be any exploitable pattern m the data [1,2].
Some recent results seem to indicate otherwise [3].
followed by and Chan [4], also
demonstrated the simple trading rules could be profitable
(but, without transaction costs).

Nevertheless, these developments are based on a
priori rules determined through technical analysis. The
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emergence of new technology, in particular evolutionary
algonithms, allows a system to automatically generate and
adapt trading rules to particular applications. Genetic
algorithms [5] have already been applied to a number of
financial applications [6]. For learming trading rules, the
genetic programming (GP) approach of Koza [7] looks
more promising, as it provides a flexible framework for
adjusting the trading rules. Although, the first attempts
by Chen and Yeh [8] and Allen and Karjalainen [8] on the
stock exchange markets did not show any excess returmns
with regard to the buy and hold approach, other recent
applications of GP are more encouraging [10-12].

A considerable amount of work has provided
support for the view that simple technical trading rules
(TTRs) are capable of producing valuable economic
signals [3,4,13,14]. However, the majority of these
studies have ignored the issue of parameter optimization,
leaving them open to the criticism of data snooping and
the possibility of a survivorship bias [15, 16] respectively.
To avoid this criticism, a more objective and valid
approach consists in choosing TTRs based on an
optimization procedure utilizing m-sample data and testing
the performance of these rules out-of-sample. In this
sense, a genetic algorithm is appropriate method to
discover TTRs [9].

The aim of this paper is to investigate the profitability
algorithm

optimization procedures. Section 2 describes the TTRs

of some popular TTRs using genetic
examined in this paper, while Section 3 presents the
genetic algorithms and. The empirical results are shown in
Section 4.

Technical Trading Rules: Tn this section, we review the
different ingredients that constitute the basis of a trading
model and reformulate them i terms of simple quantities
that can be used m conjunction with a genetic algorithm.
We first need to specify an appropriate universe of
trading rules from which the current GA may have been
applied to. Real trading models can be quite complicated
and may require many different rules that also depend on
the models own trading history. Here we limit ourselves to
simple models that depend essentially on a set of
indicators that are pure functions of the price history or of
the current return.
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Fig. 1: Moving Average trading rule

E.g Moving Average rules (MA). [17]

Define the following parameters for a simple Moving
average rule:

Short run (term/day): s

Long run (term/day): Ir

Short run average: s, is the average price of the s#
days

Trading price;

Long run average: /, is the average price of the [r
days

Trading price;

Fix band: x.

Generating a buy alert signal, when sr-lr=x;
Generating a sell alert signal, when {r-s#=x; (Figure 1)

About the data set, we divide them into two parts: in
sample set (training set) and out-of-sample set  (testing
get). In training set, we find the robust parameters and we
use the same parameters in the testing set to evaluate the
result. In this paper, we use a one-year-long data as
training set and continued one-year-long data as testing
set. We have tested four trading rules: Filter Rules,
Moving Average (MA), Support and Resistance and
Channel Break-outs [17].

The evaluation used in this paper is Sharpe Ratio,
which is defined by (R, _ R;) /o,, where R, is Expected
portfolio return, R, is Risk free rate and o, is portfolio
standard deviation. The reason we use Sharpe Ratio is

because it considers both return and risk at the same time
and more and more researchers and traders are
considering it.

Then, The simplest and most common trading rules
are moving averages (MA). In particular, we consider a
generalized MA (GMA) rule that can be represented by
the following binary indicator function:

8(0), =MAB), - (1+(1-2.5,)) 8:) MA(D)), (1)
Where O=[35,, 3, 8] denotes the parameters associated
to the GMA rule and M4 (9) is a MA indicator defined as
follows:

The lengths of the short and long MA are given by
8, and 8, while 3, represents a filter parameter included to
reduce the number of false buy and sell signals generated
by a MA rule when price movement is nondirectional.

The GMA rule is used to indicate the trading position
that should be taken at time #. In particular, equation (1)
returns either a one o zero, corresponding to a buy or sell
signal, respectively’.

Genetic Algorithms: A genetic algorithm is a population-
based search and optimization method that mimics the
process of natural evolution. The two main concepts of

"Three different MA rules are nested within the GMA rule and can be derived individually by imposing certain restrictions on

equation {1):

1) Simple MA: 8, = 1,95 1,6,=0 SO), = P, - MA,),
2)Filtered MA: 6, = 1,8, 1,8, > 0 S@), = P, - (1-25,,)9,) MA(B,),
3) Double MA: 8,=1,88,,8,=0 S(O), = MA(8,)-MA(),
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natural evolution, which are natural selection and genetic
dynamics, inspired the development of this method. The
basic principles of this technique were first laid down by
Holland and are well described, for example, i [18, 19].

The performance of a genetic algorithm, like any
global optimization algorithm, depends on the mechanism
for balancing the two conflicting objectives, which are
exploiting the best solutions found so far and at the same
time exploring the search space for promising solutions.
The power of genetic algorithms comes from their ability
to combine both exploration and exploitation in an optimal
way [5]. However, although this optimal utilization may be
theoretically true for a genetic algorithm, there are
problems in practice. These arise because Holland
assumed that the population size i1s mfinite, that the
fitness function accurately reflects the suitability of a
solution and that the interactions between genes are very
small [20].

In practice, the population size 1s fimite, which
mfluences the sampling ability of a genetic algorithm and
as a result affects its performance. Incorporating a local
search method within a genetic algorithm can help to
overcome most of the obstacles that arise as a result of
fimite population sizes.

Incorporating a local search method can introduce
new genes which can help to combat the genetic drift
problem [21, 22] caused by the accumulation of stochastic
errors due to fimite populations. It can also accelerate the
search towards the global optimum [23] which in turn can
guarantee that the convergence rate is large enough to
obstruct any genetic drift.

The Parallel Recombinative Simulated Annealing
(PRSA) algorithm [24] fights the genetic drift problem in
another way by combining the concept of the cocling
schedule
tournament selection [26] and standard genetic operators.

Due to its limited population size, a genetic algorithm

of simulated amealing [25] Boltzmann

may also sample bad representatives of good search
regions and good representatives of bad regions. A local
search method can ensure fair representation of the
different search areas by sampling their local optima [27]
which in turn can reduce the possibility of premature
collvVergence.

In addition, a finite population can cause a genetic
algorithm to produce solutions of low quality compared
with the quality of solution that can be produced using
local search methods. The difficulty of finding the best
solution 1n the best found region accounts for the genetic
algorithm operator’s inability to make small moves in the
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neighborhood of current solutions [28]. Utilizing a local
search method within a genetic algorithm can improve the
exploiting ability of the search algorithm without limiting
its exploring ability [23]. If the right balance between
global exploration and local exploitation capabilities can
be achieved, the algorithm can easily produce solutions
with high accuracy [29].

Although genetic algorithms can rapidly locate the
region in which the global optimum exists, they take a
relatively long time to locate the exact local optimum in the
region of convergence [30,31]. A combination of a genetic
algorithm and a local search method can speed up the
search to locate the exact global optimum. In such a
hybrid, applying a local search to the solutions that are
guided by a genetic algorithm to the most promising
region can accelerate convergence to the global optimum.
The time needed to reach the global optimum can be
further reduced
knowledge are used to accelerate locating the most

if local search methods and local

promising search region in addition to locating the global
optimum starting within its basin of attraction.

The improper choice of control parameters is another
source of the limitation of genetic algorithms in solving
real-world problems [32] due to its detrimental influence
on the trade-off between exploitation and exploration.
Depending on these parameters the algorithm can either
succeed in finding a near- optimum solution in an efficient
way or fail. Choosing the comrect parameter values is a
time-consuming task. In addition, the use of rigid,
constant control parameters is in contradiction to the
evolutionary spirit of genetic algorithms [33]. For this
reason, other search techniques can be utilized to set the
of these parameters whilst the
progressing.

This process, which can be described as an

values search 1s

automated, intelligent approach to trial and error, based
on principles of natural selection, is depicted in Figure 2.

As indicated, the first step in the process is
imitialization, which involves choosing a population size
(M), population regeneration factors and a termmation
criterion. The next step is to randomly generate an initial
population of solutions, P(g=0), where g is the generation.
If this population satisfies the termination criteriorn, the
process stops. Otherwise, the fitness of each individual in
the population is evaluated and the best solutions are
"bred" with each other to form a new population, P(g+1);
the poorer solutions are discarded. If the new population
does not satisfy the termination criterion, the process
continues.
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Fig. 2: The GA Process

Types of GAs: The simplest genetic algorithm represents
each chromosome as a bit string (contaming binary digits:
0s and 1s) of fixed-length. Numerical parameters can be
represented by integers, though it is possible to use
floating-point representations for reals. The simple GA
performs crossover and mutation at the bt level for all of
these.

[34, 35]. Other variants treat the chromosome as a
parameter list, containing mdices into an instruction table
or an arbitrary data structure with pre-defined semantics,
e.g. nodes in a linked list, hashes, or objects. Crossover
and mutation are required to preserve semantics by
respecting object boundaries and formal variants for
each generation can specified according to these
semantics. For most data types, operators can be
specialized, with differing levels of effectiveness that are
generally domain-dependent. [35].

Applications: Genetic algorithms have been applied to
many classification and performance tuning applications
m the domam of knowledge discovery i databases
(KDD). De Jong et al. produced GABIL (Genetic
Algorithm-Based Inductive Learning), one of the first
general-purpose GAs for learning disjunctive normal form
concepts. [36]. GABIL was shown to produce rules
achieving validation set accuracy comparable to that of
decision trees induced using /D3 and C4.5. Since GABIL,
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there has been work on mducing rules  [37] and decision
[38] usmg evolutionary algorithms. Other
representations that can be evolved using a genetic

trees

algorithm include predictors [39] and anomaly detectors
[40]. Unsupervised learning methodologies such as data
clustering [41,42] also admit GA-based representation,
with application to such current data mining problems as
gene expression profiling in the domain of computational
biology [43]. KDD from text corpora 1s another area where
evolutionary algorithms have been applied [44]. GAs can
be used to perform meta-learning, or higher-order learning,
by extracting features [45], selecting features [46], or
[47]. They have also been
applied to combine, or fuse, classification functions
[15].

selecting traiming mstances

Future Trends: Some limitations of GAs are that in certain
situations, they are overkill compared to more
straightforward optimization methods such as hill-
climbing, feed forward artificial neural networks using
back propagation and even simulated annealing and
determimstic global search. In global optimization
scenarios, GAs often manifest their strengths: efficient,
parallelizable search; the ability to evolve solutions with
multiple objective criteria [48]; and a characterizable and
controllable process of innovation. Several current
controversies arise from open research problems in GEC:
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¢ Selection is acknowledged to be a fundamentally
important genetic operator. Opinion is, however,
divided over the importance of crossover verses
mutation. Some argue that crossover is the most
important, while mutation is only necessary to ensure
that potential solutions are not lost. Others argue
that crossover in a largely uniform population only
serves to propagate imovations originally found by
mutation and in a non-uniform population crossover
is nearly always equivalent to a very large mutation
(which 1s likely to be catastrophic).

¢ In the field of GEC, basic building blocks for
solutions to engineering problems have primarily
been characterized using schema theory, which has
been critiqued as being msufficiently exact to
characterize the expected convergence behavior of a
GA. Proponents of schema theory have shown that
it provides useful normative guidelines for design of
GAs and automated control of high-level GA
properties (e.g. population size, crossover parameters
and selection pressure). Recent and current research
in GEC relates certain evolutionary algorithms to ant
colony optimization [49].

In order to determine which solution candidates are
allowed to participate in the crossover and undergo
possible mutation, we apply the gemtor selection method
proposed by Whitley [50]. This approach involves
ranking all individuals according to performance and then
replacing the poorly performing individuals by copies of
better performmng ones. In addition, we apply the
commonly used single point crossover, consisting in
randomly pairing candidates surviving the selection
process and randomly selecting a break point at a
particular position in the bmary representation of each
candidate. This break point 1s used to separate each
vector into two sub vectors. The two sub vectors to the
right of the break point are exchanged between the two

Table 1: Performance statistics

vectors, vielding two new candidates. Finally, mutation
occurs by randomly selecting a particular element in a
particular vector. If the element 1s a one it 1s mutated to
zero and viceversa. This occurs with a very low
probability in order not to destroy promising areas of
search space.

Empirical Results: The data consists of daily closing
prices of the General Index of the Tran Stock Exchange and
the daily  3-month rate in the interbank deposits marlcets,
covering the 2 January 1985-15 November 2010 period
(4376 observations). The total period 1s split into an in-
sample optimization period from 2 January 1985 to 16
December 2001 and an out of- sample test period from to
16 December 2001 to 15 November 2010 (2188
observations n each sub period).

The initial population was set at 150 candidates, while
the maximum number of both generation allowed and
iterations without improvement was fixed at 300. The
maximum the probabilities associated with the occurrence
of crossover and mutation were set at 6% and 0.5%,
respectively. These choices were guided by previous
studies [6] and experumentation with different values. The
signals from the trading rules are used to divide the total
mumber of trading days (V) into either “in” the market
(earning the market;;, =In (ﬁ) J or “out” of the

Pr1
market (earning the risk-free rate of return #f, ). Therefore,
the objective function used to evaluate the trading rules
1s given by the following expression:

N N
by = ZSt_lrmt +Z(1—St_1 )rj} —T*e (2)

t=1 t=1

Where T is the number of transactions and ¢ is the cost
per transaction. As an appropriate benchmark, we
consider the return from a risk adjusted buy and hold
strategy defined as

GMA trading rile

Risk-adusted by and hold strategy

Tn-sample Out-of-sample Tn-sample Out-of-sample
Ttansaction Costs  Parameter Values SR ; SR ; SR ; SR
0.25% (207,242,0) 33.30 0.0072 14.63 0.0068 25.36 0.0068 10.86 0.0044

Nates: GMA trading riles are identified as (5,4, 5), where s and / are the length of the short and long period (in days) and & is the filter parameter. ; is the

average annualized return of the trading strategy and SR is the Sharpe ratio .
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N N
?j_;;,,:g=aer}+(1—a)2rmr -2 (3)

#=l Fal

where a is the proportion of trading days that the rule is
out of the market. Table 1 summarizes the results. As can
be seen, the best GMA rules are double MA rules,
without a filter parameter (except for the case of 0
transaction costs). The Sharpe ratio and the annualized
returns corresponding to the best GMA rule are higher
than those from the risk adjusted buy and hold strategy,
both for the in-sample and out-of-sample period4s’. It is
interesting to note that this results holds for all
transaction costs examined.
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