World Applied Sciences Journal 14 (6): 831-841, 2011
ISSN 1818-4952
© IDOSI Publications, 2011

A Method for Validating the Behavior of Enterprise Architecture

‘M. Mozaffari, “A. Harounabadi and *S.J. Mirabedini

"Department of Computer, Arak Branch, Islamic Azad University, Arak, Iran
*Department of Computer, Central Tehran Branch, Islamic Azad University, Tehran, Iran

Abstract: Enterprise architecture process includes Enterprise architecture transition from current state

architecture into target state architecture. Tlis process contains three phases namely mformation technology
strategic planning, enterprise architecture planning and execution of the enterprise architecture. In this process,

each phase 1s pre-requisite for another one. Any errors mn each phase can lead to an error in the whole
architecture, so it cause a great cost in time and economy to the enterprise. This 1s very important in the second
phase (enterprise architecture planning). If executable model of enterprise architecture products is created in

the second phase and this model is used to validating the behavior and evaluating non-functional requirement
of enterprise architecture, any possible errors during execution phase can be avoided. In this paper, we use

formal models and create an executable model from enterprise architecture products using Colored Petr1 Nets
that is used for validating the behavior of the architecture. Then we propose a method for validation of created

model.

Key words: Enterprise architecture -

Executable model - Validating the behavior - Colored Petri Nets

INTRODUCTION

In order to recognize and manage the chaotic nature
of enterprise-wide IT system m the real world, the
discipline of enterprise architecture (EA) has been
emerged since a few years ago. In general, EA provide a
knowledge base and supports for making proper
decisions on the overarching IT related issues within the
underlying enterprise. Enterprise architecture is a
comprehensive description of an enterprise containg a
huge collection of models, diagrams and documents as it
15 needed for applying in the enterprise’s busmess. Such
a huge jungle of models may not be organized without the
proper use of a logical structure. Framework presents a
logical structure for categorizing architecture blueprints.
So, framework is the most mportant concept in the
enterprise enterprise
depends on it to achieve its goals. Many frameworks have

architecture and architecture
been proposed for the enterprise architecture. Among
them, C4ISR enterprise architecture framework is a
suitable and comprehensive framework for military
organizations that has been published by Department of
Defense (DoD).

Enterprise architecture process contains three phases
namely information technology strategic planning,
enterprise architecture planmng and execution of the

enterprise architecture. In this process, each phase is pre-
requisite for another one. Any errors in each phase can
lead to an error in the whole architecture, so it cause a
great cost in time and economy to the enterprise. This 1s
very important in the second phase (EA planning). If
executable model of EA products is created in the second
phase and this model 1s used to validating the behavior
and evaluating non-functional requirement of enterprise
architecture, any possible errors during execution phase
can be avoided.

During the recent years, many techniques have been
proposed for Enterprise Architecture Assessment [1-10].
[1, 2] describe the main line of a methodology / approach
in use by several organizations to review the activities
and results of enterprise architects. [1] is version 2.1 of
this approach and will be continuously refined based on
practical experience. [2] is version 2.2 of this approach and
will be continuously refined based on practical experience.
[3] presents an approach for quantitative analysis of
layered, service-based enterprise architecture models,
which consists of two phases: a top-down propagation of
workload parameters and a bottom-up propagation of
performance or cost measures. [4] provides a general
description of an architecting process based on object
orientation and UML and Tt then provides a rationale for
style constraints on the use of UML artifacts for

Corresponding Author: M. Mozaffari, Department of Computer, Arak Branch, Islamic Azad University, Arak, Tran.

World Appl. Sci. J, 14 (6): 831-841, 2011

representing DoD Command, Control, Communications,
Computers, Intelligence, Surveillance and Reconnaissance
(C4ISR) architectures. Finally it describes a mapping
between the UML artifacts and an executable model based
on colored Petri nets that can be used for logical,
and performance of the
architecture.[5] proposes an imtegrated process
developing data architecture views in Zachman framework

behavioral evaluation

for

and [6] presents a formal language based on Petri nets in
order to obtain verifiable models for all cells in Zachman
framework. The presented method helps developers to
validate and verify completely integrated business and IT
systems which results in improve the effectiveness or
efficiency of the enterprise itself [7] suggests a meta
model derived specifically with a set of theory-based
system quality analyses in mind. [8] introduces mentioned
about determine EA qualification and its qualitative
characteristics more clearly that can be used as a
reference to mvestigate EA qualification and its models.
[¢] applies some kinds of views of UML to describe the
relative CAISR (Command, Control, Communication,
Computer, Intelligence, Surveillance and Reconnaissance)
architecture products. Considering the relationship among
the products, the architecture products modeling in TUMI.
diagram is transformed to the executable OPN (Object-
based Petri Nets) models based on the transformation
It shows the process of OPN mechanisms
application for the C4AISR system design validation. [10]
provides a conceptual framework for information security

rules.

management in such convergent environment among
federated and related orgamzations.

In this paper, we want to present a method for
validating the behavior of CAISR Enterprise Architecture
products. For this purpose, we use formal models and
create an executable model from enterprise architecture
products wsing Colored Petri Nets that is used for
validating the behavior of the architecture. Since CAISR
enterprise architecture framework use UML (Unified
Modeling Language) for modeling and EA products can
be created by UML, so at first We describe transformation
algorithm which transforms one type of UMIL, diagrams:
Sequence Diagrams, used n the architecture, mto Colored
Petri Nets and create an executable model base on Colored
Petri Nets. Then we propose a method for validation of
created model. In The proposed method we use the
sequence diagram elements such as: messages,
send/receive events and source/destination of messages
and write properties in terms of boolean expression over
the elements. Finally, we check if created model provides

properties correctly. In this study, we use CPN Tools to

832

simulate the execution and validation of architecture.
CPN Tools 1s a CASE Tool for editing, simulating and
analyzing Colored Petri Nets. Tt uses the CPN ML
language for declarations and net inscriptions.

Definitions And Primary Concepts

Cdisr Architecture Framework Version 2.0: The CAISR
Architecture Framework document issued by the
Department of Defense specifies four views of an
information architecture and defines a set of products that
describe each view. These architecture views are to serve
as the basis for C4ISR system development and
acquisition. The four views are All View, Operational
Architecture View, Systems Architecture View and the
Technical Architecture View. Each view describes a
particular characterization of the architecture using a set
of products that are graphical, tabular, or textual. The Al
View 1s comprised of two products. The Overview and
Summary Information Product, AV-1, 1s like an executive
summary and it contains summary textual information that
will allow quick reference and comparison among
architectures. This information includes the name of the
architecture and the architect, its purpose, scope and
It describes major findings
recommendation that are based on the architecture. The
Integrated Dictionary i1s AV-2 [4]. The Operational
Architecture View is a description of the tasks and

context. also and

activities, operational elements and information flows
required to accomplish or support a military operation. Tt
describes the architecture from the operators” conceptual

viewpoint. Thus 1t does not reflect systems or
teclhnology, but rather operational activities that are
performed at notional operational nodes and the

interchanges of messages and data that take place
between those nodes. It is composed of seven products,
OV-1 through OV-7 [4]. While the OV products focused
on the operators’ perspective of the architecture the
products of the System Architecture View focus on the
systems and their interconnections and interfaces that will
enable operators to carry out their mission. Thus, the
System Architecture View is a description, including
graphics, of systems and interconnections providing for,
or supporting, warfighting functions. It is composed of 11
products, SV-1 through SV-11. Each product highlights a
different aspect of the architecture from the systems
perspective. The Technical Architecture View conveys
the set of rules that governs system mmplementation. This
view is composed of two products: The Technical
Architecture Profile (TV-1) references the technical
standards that apply to the architecture and how they

World Appl. Sci. J, 14 (6): 831-841, 2011

Standards
mformation

need to be implemented TV-2 is the
Technology Forecast. It the
contained in TV-1 to list anticipated updates and changes

extends
1 applicable standards for the architecture [4].

The Unified Modeling Language: The Unified Modeling
Language (UML) [11] 1s a sermi formal language developed
by the OMG to specify, visualize and document models of
software systems and non-software systems too. UML
defines twelve types of diagrams, divided into three
categories: static diagrams, behavioral diagrams and
diagrams to organize and manage application modules.
diagrams, activity, collaboration,
sequence, state chart and use case diagrams portray the
dynamic behavior of the system. When used to specify a

Behavioral 1e.,

system, each of these diagrams represents a specific
aspect of the same system. UML is a rich language that
can be used to represent architectures of mformation
systems, ncluding C4ISR systems, using multiple views.
Several approaches can be used to generate the
executable model. For example, executable models can be
derived from wvarious behavioral diagrams (activity
diagrams, state chart diagrams, sequence diagrams, etc.)
or structural diagrams (class, object, implementation
diagram, etc.). Our approach uses the sequence diagram
to generate the executable model. Sequence Diagrams are
used to represent the life cycle of an object or the
sequence of mteractions between objects by message
passing. They are used to get a better grip of an
mteraction situation for an individual designer or for a
group that needs to aclhieve a common understanding of
the situation [12]. basic elements of sequence diagram are:
life lines (the sender and receiver components), messages,
comnector, send and receive events and a variety of
structures like sequence, altermation and option, loop,
parallel and etc which are presented as combined
fragments. Tn this diagram, communications are of two
kinds: asynchronous, synchronous.in an asynchronous
communication, action just ends with sending of massage
and the sender 1sn’t waiting for the completion of the
action and the receiving of the answer. Tn a synchronous
commumnication, when the message 13 sent, sender is
waiting for the answer and the completion of the action.
Synchronous/asynchronous messages and answers are
visualized by arrows with solid and hollow heads,
respectively and answers are visualized by dotted arrows.

Petri Nets: Petri Nets was first coined by Carl Adam Petri
at early 060°s. Here the basic aspects of distributed
systems

are represented both mathematically and

833

conceptually. Petri Nets is a graphical oriented language
for specificationy, design, simulation and verification of
systems.a Petri Net consists of places, transitions and
arcs [13]. Places are represented as circle, transition as
rectangle and arcs as a directional line connecting from
place(s) to transition(s) or vice versa but adding an arc
between two places or transitions is not the correct way
of representation.

A place can contain tokens. A Petri Net model with
different number of tokens in each place is a marking
which represents particular instance of the designed
system (state of a system). Transitions are active elements
that are fired when they are enabled (1e. when
precondition associated with the transition 1s fulfilled).
Firing of transition results in decrement of some tolcens
from all input places of that transition and mcerement of
some tokens at all output places. The number of tokens
added or removed from associated place 1s based on the
expression associated with the arc connected from these
places to the firing transition.

Formally Petri Nets can be defined as a 4-tuple
PN =(P, T, F, M0O)

Where

P 1s a fimte set of places

T is a finite set of Transitions

Fc(P=xT)u(T = P)is aset of arcs called flow relation
MO: P— {0, 1,2, ...} is the initial marking
PnT=@andPuT=0O

Colored Petri Nets (CPN) is a high level Petri Nets
which describes complex systems in a manageable way
[14]. Tn this model each token is attached with a data type
called color. A color might be as sumple as an integer type
representing the number of tokens. A complex type can be
collection of simpler data types and/or complex data
types.

CPN Tools is a CASE tool for editing, simulating and
analyzing Colored Petri Nets.
incremental syntax checking and code generation that

The tool features

take place while a net 13 being constructed. A fast
simulator efficiently handles both untimed and tined nets.
Tt uses the CPN ML language for declarations and net
inseriptions [15]. In this study, we have used CPN Tools
to simulate the execution and verification of architecture.

Transformation Algorithm: The first step for the
creation of an executable model is transformation
of UML sequence d iagram into Colored Petri Nets.

World Appl. Sci. J., 14 (6): 831-841, 2011

D—)?/C>X

Fig. 1: Mapping of an asynchronous message [16]

O

Fig. 2: Mapping of a synchronous message [16]

For this purpose, there are a variety of methods. In the

paper we use proposed approach in [16] and [17]. In [16]
transformation concentrates on an message
sender/receiver object and a variety of messages are
transformed into Petri Nets. In [17] a variety of structures
in the sequence diagram have been transformed into
Colored Petri Nets. In continuation, we explain that.

Translation of Asynchronous Messages into Colored
Petri Nets: Figure 1 shows translation of an
asynchronous message into Colored Petri Net. Such a
communication is made up by means of a shared place
that is seeing as an outcome place from the sender object
and an income place from the receiver object. The sender
and the receiver are represented each one as Place-
Transition-Place [16].

Translation of Synchronous Messages into Colored Petri
Nets: Figure 2 shows translation of a synchronous
message into Colored Petri Net. Such a communication is
made up by two shared place that one for the call and the
second for the return. the sender and the receiver are
represented each one as P-T-P-T-P (Place-Transition-
Place-Transition-Place).The centric P of the P-T-P-T-P
sequence plays the part of waiting place for the sender
and provided method place for the receiver [16]. The
second shared place is equivalent to the acknowledge
return or result.

Translation of UML 2.0 Combined Fragments into
Colored Petri Nets: A variety of structures like sequence,
alternation and option, loop, parallel and etc are presented
as combined fragments. In continuation, we explain

834

Fig.3: Weak sequencing operator and Colored Petri
Net of its equivalent [17]
(o]
! 4
(o] g ‘: R q
Fig. 4: Alt operator and Colored Petri Net of its

equivalent [17]

translation of the most popular combined fragments into
Colored Petri Nets.

Weak sequencing combined fragment: Figure 3
shows translation of weak sequencing combined
fragment into Colored Petri Net.

Alternation and option combined fragments:
alternation and option combined fragments represent
a choice of behavior in sequence diagrams.
Alternative and Option operators are denoted as alt
and opt, respectively. Figure 4 shows alt operator and
Colored Petri Net of its equivalent.

Parallel combined fragments: A parallel combined
fragments, denoted by par operator, represents a
parallel merge between the behaviours of the
operands. Figure 5 shows parallel operator and
Colored Petri Net of its equivalent.

Loop combined fragments: The operator loop
indicates that the combined fragment represents a
repetition structure. The loop operand will be
repeated a certain number of times according to the
values defined by the designer. Figure 6 shows loop
operator and Colored Petri Net of its equivalent.
Break combined fragments: The interaction operator
break shows a combined fragment representing a
breaking scenario. If the guard condition is true, the
operand scenario is performed instead of the
remainder of the enclosing interaction fragment.
Figure 7 shows parallel operator and Colored Petri
Net of its equivalent.

World Appl. Sci. J., 14 (6): 831-841, 2011

Fig. 5: Parallel operator and Colored Petri Net of its
equivalent [17]

ETes Fe

i i
L ’
Pr——

i {
I
I |
I |

and Colored Petri Net of its

A
e

Fig. 6: Loop operator
equivalent [17]

a

breay 5
[rs™
1]
]

q
—

oo e e 20 ofled

I
1

Fig. 7: Break operator and Colored Petri Net of its
equivalent

An Executable Model Based on Colored Petri Nets:
In this section, we create an executable model base on
Colored Petri Nets and propose a method for validation of
created model. An executable model from sequence
diagram for validating the behavior of the architecture is
created as follows:

Step 1: A hierarchical method is used for making of an
executable model by Colored Petri Nets. First, we
have to consider a substitution transition instead
of every combined fragment and create a subpage
for every substitution transition.

For transforming of the sequence diagram into
Colored Petri Net use the presented algorithm in
the previous section.

For each lifeline (sender/receiver component of
message), each send/receive events and each
message in sequence diagram, a variable is
declared. The values of these variables are
updated together with each send/receive event.
In Colored Petri Net of its equivalent, in the code
segments of transition that do the send/receive

Step 2:

Step 3:

835

b

T 1

| t
I P |
I

t2

()

Fig. 8: A sequence diagram and Colored Petri Net of its
equivalent

events of messages, these variables are taken
amount. For example, in the code segment of
transitions of figure 8, these variables are taken
amount as follows:

t1 transition:

{send=true, msg_p_s=true, procl_a=true, proc2_a=false,
proc2_b=true}

t2 transition:

{receive=true, msg p r
proc2_b=false, proc2_a=true}
t3 transition:

{send=true, msg_q_s=true, procl_a=true, proc2_a=false,
proc2_b=true}

t4 transition:

{receive=true, msg_q_r=true,
proc2_b=false, proc2_a:=true}

=true, procl_b=true,

procl_b=true,

Step 4: After binding values with variables, properties
are written in terms of boolean expression over
variables. Below, we present two examples of
properties written using variables:

Example 1: Suppose one wants to verify in the sequence
diagram from Figure 8 whether “a will not send message
q until b receives message p”. The boolean expression
corresponding to this property is:

(not X) orelse Y

x= (procl_a andalso send andalso msg_q_s)

Y= (procl_b andalso receive andalso msg_p r)

Example 2: Suppose one wants to verify in the sequence
diagram from Figure 9 whether “a will not receive message
q until ¢ receives message p”. The Boolean expression
corresponding to this property is:

(not X) orelse Y

X=(procl_a andalso receive andalso msg_q_r)

Y= (procl_c andalso receive andalso msg_p r)

World Appl. Sci. J., 14 (6): 831-841, 2011

=

‘\\l

S

Fig. 9: A sequence diagram and Colored Petri Net of its
equivalent

Step 5: Does really the sequence diagram present
correctly expressed properties in step 4 or not?
We should check each of the properties for the all
of the execution paths in sequence diagram. For
this purpose, we create tokens in number of
lifelines in sequence diagram and lay them at the
first place each lifeline (in the Colored Petri Net its
equivalent). For example in the Colored Petri Net
from Figure 9, three token are created and laid on
the places 1, 2 and 3.

In every stage of simulation, one of the executed
paths in sequence diagram is surveyed and the results of
simulation show if execution paths provide expressed
properties correctly or not?

Step 6: There is a mechanism in CPN Tools named
monitor that is used to observe, inspect, control, or
modify a simulation of a CP-net. Monitors can inspect
both the markings of places and the occurring binding
elements during a simulation and they can take
appropriate actions based on the observations [15]. In
order to survey expressed properties, for each property a
monitor is written and associated with group of
transitions in every subpage. The start/stop functions of
the monitor return none and predicate function returns
true if and only if one of the transitions occurs.
Observation function is called when predicate
function returns true. Then observation function check

836

{2 7eceve 2.a)

ta.send. 0 a)

{a.se=d g o) {2.eceve. qga

Fig. 10: An execution path of sequence diagram in Fig. 8

time
12
1z

data
1
1

counter

1

step
10
1z

Fig. 11: Obtained data in a log file

the verification of the property. If its respective boolean
expressions is true, observation function returns one and
otherwise it returns zero. These values save in a log file.

Executable Model Analysis and Simulation Results:
After the executable model is created by Colored Petri
Nets, we should assign properties to Colored Petri Net
and execute the model and check the Validation of UML
sequence diagrams. For example, after assign property
1(example 1) to Colored Petri Net in figure 8 and execute it,
the results show that there is at least an execution path on
which the property 1 doesn’t occur (Figure 10). Figure 11
shows the obtained data in a log file after the execution of
the model. Values that is written at the first column is the
returned values of the observation function. Because one
of the returned values is zero, therefore the sequence
diagram in Fig. 8 doesn’t provide the property 1 correctly
and its validation is refused.

Case Study: In this case study we are going to analyze an
Automated Teller Machine (ATM). The ATM interacts
with two other entities: The Customer (User) and the
bank. Figure 12 describes a use case where the user starts
a cash withdrawal request by inserting his/her card. The
ATM must verify the card and the personal identification
number (PIN) to proceed. If the verification fails the card
should be ejected. Otherwise, the user chooses cash
withdrawal operations and enters the amount to be
withdrawn. The first and second combined fragments are
dealing with the authentication of the card and the PIN,
respectively. The third checks the account balance.

At first, a hierarchical method is used for making of
an executable model by Colored Petri Nets. In the
hierarchical method, we have to consider a substitution
transition instead of every combined fragment (Figure 13)
and create a subpage for every substitution
transition(Figure 14, Figure 15, Figure 16, Figure 17).
Figure 18 shows Screenshot of the CPN Tools workspace
for executable model created by Colored Petri Net.

World Appl. Sci. J., 14 (6): 831-841, 2011

User ATM Bank
enter card
par, vetifycard
cardstatus
e EEEEEE]
wailtPIN
enterPIN
alt)] [cardoK] verifyPIN
PlINstatus
oo TEEE]
[else] .
ejectcard
alt)| [cardOKapinOK]
printmenu
withdrawal
paymentrequest
amount

checkbalance

halancestatus

¢ommmoo o PAAncEstatus
[al Noalanceok] dehit
pickcash
[else] N .
insufficianfounds
hack
ejectcard
felse] ejectcard
Fig. 12: ATM sequence diagram
Jser AT derk (?
?/::EI -1 ? O
Pzymnzat ragquast
v O™
zmzdat (5
0 T
Chzcs oz 3ng2
._—/’.O_‘\-—i-
Bz zq02 stztas
Fig. 13: Hierarchical net for ATM sequence diagram Fig. 14: Substitution transition cardok&pinok

837

World Appl. Sci. J., 14 (6): 831-841, 2011

O

Wait pin

R

Cl) Enter pin O

v
-

Card status
[U\ -
;2

Fig. 15: Substitution transition parallel
|

WEYT

0

Sstatus

Fig. 16: Substitution transition cardok

ML Properties:

e The first property states that the ATM cannot allow
the user to request an operation if either the card or
the PIN is not valid:

(x—not y) = (not x orelse not y)
Where x = (not (cardOK) orelse not (pinOK)) and

y=(Procl_User andalso receive andalso
msg_printmenu_r)

838

suff can founds

.Lfom&

Zectead

/O‘_i

2ac4

v
Zeat

'L/'O_\—»-

(e

'c4casn
O
Fig. 17: Substitution transition balanceok

The second property is needed to avoid
inconsistencies between the money given to the user
and the amount debited in the bank. It asserts that
the ATM must first debit the amount in the bank and
then give the money to the user. In other words, the
user does not receive pickCash until the bank
receives debit:

(not x orelse y)

where (procl_User andalso receive andalso

msg_pickcash r) and
y= (procl_Bank andalso receive andalso msg_debit r)

X=

The third property is to ensure the correct end of the
session between the ATM and the user. It says that,
after the user receives ejectCard, the ATM cannot
send anything to the user:

(x—not y) = (not x orelse not y)

where (procl_User andalso receive andalso

msg_ejectcard r) and
y=(procl_ATM andalso send andalso proc2_ User)

X=

ATM Case Study Results: After the executable model is
created by Colored Petri Nets, we should assign
properties to Colored Petri Net and execute the model and
check the Validation of UML sequence diagrams. Using
CPN Tools to verify the properties described previously,

World Appl. Sci. J., 14 (6): 831-841, 2011

ﬁCPN Tools (Version 2.2.0 - September 2006)

9.)

1

C

next state

K 1 171

(km@+{ INTL
if k=3 then 5 » ks

» Tool box Einder 0
»Help system alt_cardok alt_cardok & pinok _parallel alt_balancok
» Options 11e 1'e
Step: 0 state
Time: 0 E
» Options _
»History (@7
¥Declarations

else 0
¥ globref thestring="";)

vglobref c=1;

¥ colset DATA=string;
»Flags

»FUN initialise

¥ colset E=with e;

» colset BOOL

» colset INT

(k,n)

(k,n)@+(
ifk=1then s

1 INT
then outfile:=TextI0.openOut("Phw
k) elgel);
DATA.output(loutfile, "enter card-{>");
(kn)@-+(
if k=2 then 5
else 0)
XINT

(k,n|

»colset INT1

» colset INTXINT

»vark

¥yvar nINT;

¥val cardok=false;

»val pinok

¥ val balariveck

¥ globref counter=empty:INT ms;

¥fun getcounter()=(!counter);

¥ globref outfile = Textl0.stdOut;

¥Monitors

» Property ii

¥Property iii
»Type: Data collaction
»Nodes ordered by pages
»Predicate
»Observer
» Init function
»Stop

»system

None Group 1

INTXINT

INTXINT

NT

INT

Group 1 Group 2 :

Fig. 18: Screenshot of the CPN tools workspace

data counter step
1 1 23
1 z 19
1 3 69

Fig. 19: Obtained data in a log file of property i

Execution paths

path 1: enter card--=verifycard--=cardstatus--=waitpin--> enterpin-- =verifypin--=pinstatus--=ejectcard
path 2: enter rard-->waitpin-- = verifyrard--=cardstatus--= enterpin-- =verfypin--=pinstatus-->ejecteard

bat.h 3: enter card-->waitpin--=enterpin--= verifycard--=cardstatus-- =verifypin--=pinstatus-->ejectcard

Fig. 20: Execution paths of sequence diagram in fig. 12 after the execution of model for property i

we found that only the first property is satisfied. Figure 19
shows the obtained data in a log file and figure 20 shows
execution paths of sequence diagram in figure 12 after the
execution of the model for property i. In the following, we
present the failing trace related to the verification of each
property:

Property: In the results shown in Figure 21, it possible to
see that there is at least an execution path on which the
property ii doesn’t occur. Values that is written at the first

839

column is the returned values of the observation function.
Because one of the returned values is zero therefore the
sequence diagram in Fig. 12 doesn’t provide the property
ii correctly and its verification is refused. Figure 22 shows
execution paths of sequence diagram in Figure 12 after the
execution of the model for property ii.

Property iii: In Figure 23, at least one of the
returned values is zero (execution path on which
the ATM tries to eject the card twice), therefore

World Appl. Sci. J., 14 (6): 831-841, 2011

data counter step time
1 1 £ 13
1 z §0 4z
q 3 121 il

Fig. 21: Obtained data in a log file of property ii

Execution paths

path L enter card--=verlycard--=cardstatus--~waitpin--=enterpin--= verilypin--=pinstatus--=printmeny--= withdrasal--=
paymentre quest- -checkbal hal - dehit -~pickeash--hack-=ejectcard

o

path 2: enter card-->verillycard--=walipin--= enterpin--= card st atus--= verilypin-->pinstatus--=printmenu--=withdrawal--=
paymentre que st-- =checkhbal -=hal - dehit-pickcash--=back-=ejecteard

path 3 enter card--=waitpin-—=entexrpin-->verdycard--= card status--= verilypin--=pinstatus--=printmeny--=withdrawal--=
DAFMENLTE quest--> amount-=>checkbalance--halanc estatuse-->pickcash-> debit-=hack---ejecteard

Fig. 22: Execution paths of sequence diagram in Fig. 12 after the execution of the model for property ii.

data counter step time
0 1 19 20
0 z 39 a3
0 3 9 1z

Fig. 23: Obtained data in a log file of property iii

Execution paths

path 1: enter card--=verifycard--=cardstams-->waitpin-->enterpin-- > ejecteard- - ejececard
path 2 zenter card--»waitpin--»verfycard--»enterpin-->cardstatus--» gjectcard--=ejectesrd

path 3: enter card-->waitpin--=>enterpin--=verifycard--= cardstatus--= ejectcard--=ejectcard

Fig. 24: Execution paths of sequence diagram in Fig. 12 after the execution of the model for property iii

the sequence diagram in Figure 12 doesn’t provide
the property iii correctly and its verification is
refused. Figure 24 shows execution paths of sequence
diagram in Fig. 12 after the execution of the model for
property iii.

CONCLUSION
In this paper, we present a method for
validating the behavior of C4ISR Enterprise

Architecture products. For this purpose, we use
formal models and create an executable model from
enterprise architecture products using Colored Petri Nets
that be used for validating the behavior of the
architecture. Since it takes into account the most popular
UML combined fragments, this approach allows the
developer to detect flaw in more completed complex
sequence diagrams.

840

The mechanism introduced in this work to keep track
of the execution state provides the information the
developer needs to write ML properties. Moreover, the
way it was implemented gives flexibility to write very
expressive properties. This technique can provide a very
useful framework to detect errors at the planning phase,
as a result, the proposed method causes increasing
validation and verification of behavior of system.

REFERENCES

1. Schekkerman, J., 2004. Enterprise Architecture Score
Card Version 2.1, Institute For Enterprise Architecture
Developments, The Netherlands.

Schekkerman, J., 2006. Enterprise Architecture
Assessment Guide Version 2.2, Institute For
Enterprise Architecture Developments, The
Netherlands.

World Appl. Sci. J., 14 (6)

Locob, M.E. and H. Jonkers, 2005. Quantitative
Analysis of Enterprise Architectures. In the
Proceedings of the First International Conference on
Interoperability of Enterprise Software
Applications (INTEROP-ESA'2005), Geneva,
Switzerland, pp: 234-248.

Wagenhals, L.W., S. Haider and A H. Levis, 2003.
Synthesizing Executable Models of Object Oriented
Architectures. Journal of Systems Engineering, Vol.
6, No.4, pp. 266-300.

Rezaei, R. and F. Shams, 2008. A Methodology to
Create Data Architecture in Zachman Framework.
World Applied Sci. I, 3(2): 43-49.

Ostadzadeh, sh., M.A Nekoui, 2009. A Petri-Nets
Based Umfied Modeling Approach for Zachman
Framework Cells. In the Proceedings of SCSS'2009,
pp:615-618.

Némman, P., P. Jolmsen and L. Nordstrém, 2007.
Enterprise Architecture: A Framework Supporting
System Quality Analysis. In Proceedings of the 11%
International EDOC Conference, pp: 130-141.
Khayami, R., A. Towhidi and K. Ziarati, 2011.
Evaluating Quality Characteristics of Enterprise
Architecture. In the Proceedings of World
Conference on Information Technology, 3: 1277-1282.
Hui Bai, X., 2008. An application with UML Object-
based Petr1 Nets for C4ISR architecture simulation
validation, In the Proceedings of International

and

Conference on Machine Learning and Cybernetics,
Kunmmg, pp: 2257-2263.

841

10.

11.

12.

13.

14.

15.

16.

17.

1 831-841, 2011

Elahi, 8., A. Shayan and B. Abdi, 2008. Designing a
Framework for Convergent Information Security
Management among Federated Orgamzations. World
Appl. Sei. 1., 4(2): 21-32.

Booch, G., J. Rumbaugh and 1. Jacobson, 1999. The
Unified Modeling Language User Guide, Addison
Wesley, Reading MA.

Haugen, @. and K. Stelen, 2003. STAIRS - steps to
analyze interactions with refinement semantics, in:
UM, 2003 - The Unified Modeling Language. Model
Languages and Applications. In the Proceedings of
6% Tnternational Conference, San Francisco, CA,
USA, pp: 388-402.

Peterson, J.L., 1981. Petri Net Theory and the
Modelling of Systems, Prentice-Hall, Englewood
Clhiffs, NJ.

Kristensen L.M., S. Christensen and K. Jensen, 1998.
The Practitioner's Guide to Coloured Petri Nets.
International Journal on Software Tools for
Technology Transfer, Springer Verlag, pp: 98-132.
CPN tools help, http://wilki.daimi.au.di/cpntool shelp/
cpntoolshelp.wilsi.

Ourdani, A., P. Esteban, M. Paludetto and I.C. Pascal,
2006. A Meta Modeling Approach for Sequence
Diagram to Petri Nets Transformation Within the
Requirements Validation Process. In the Proceedings
of the European Simulation and Modeling Confrence,
Toulouse, France, pp: 345-349.

Emadi, S. and F. Shams, 2009. A new executable
model for software architecture based on Petri Net.

Indian J. Sci. and Technol., 2(9): 15-25.

