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Abstract:

This paper considers the problem of estimation of heat capacity in a one-dimensional heat

conduction problem from temperature measurement in the domain. This is a typical inverse heat

conduction problem (IHCP). The corresponding direct heat conduction problem (DHCP) will be solved by

an application of the Fnite-Difference approximation and analytical method and the heat capacity to be

estimated by using Inverse Technique. Finally, we compare the numerical results with the analytic solution,

numerically and graphicly.
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INTRODUCTION

The mverse heat convection problems involve the
determinations of the thermal properties, boundary
condition, energy-generation rate, or thermophysical
properties, from the knowledge of the temperature
measurements taken in the domain.

Inverse problems are encountered in various
branches of science and engineering. Aerospace and
chemical engmeers, mathematicians, astrophysicists,
statisticians and specialists of many other disciplines all
are interested in inverse problems.

This paper considers the problem of estimation of
heat-capacity in a one-dimensional heat conduction
problem from temperature measurement on the slab
and it deals with the method for determining heat-
capacity, which is based on the solution of the inverse
problem of the identification of unknown heat-capacity
parameters.

The problem of parameter identification is solved by
nonlinear least-square method. The solution of this
mverse problem requires a fimite set of temperature
measurements taken inside the slab and assumes that
the heat-capacity belongs to set polynomial. The

effectiveness of the inverse problem's solution is
substantially dependent on related diwect problem's

solution.

Using Finite-Difference approximation, the direct
heat conduction problem has been transferred to
inhomogeneous imtial value problem (IVP) and then an

analytical solution presented for TVP [1, 2].

The Direct Problem: Consider a direct problem of a one-
dimensional heat conduction problem of the following
form:
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Where NCACR)) 15 the heat flux, &(x) is the thermal
ax

conductivity, ¢(x) 1s the heat capacity and ¥, f, p, g are
18 concerned

distribution
T(x,t) in the interior the slab as a function of position and

known functions. Then the problem

with the determination of temperature

time. we shall refer to such traditional problems as the
DHCP's.

The following method is used to solve this direct
problem [3]:
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The central-difference approximations of finite

difference represents the derivatives as:
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Where Ax is the increment in the x spatial
coordinates, i is the i th grid along the x coordinate,
MAx =1 and T(¢#) is the temperature at the grid point i.

The boundary conditions at x = 0 and x = 1 are
transformed as follows:

— k(T = To) = (Ax)p() 3)
—Fad Do = Lo = (Ax) g (1), )

and be 1mtial condition at £ = 0, 13 T(0) = fix) = f.
Then the problem (1) can be expressed as the
following recursive forms:
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The above recursive forms can be expressed in the
following matrix equation:
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the solution of the inhomogeneous imtial value problem
(6) may be found as following steps:

Step 1: Find the fundamental matrix.
-1
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of the homogeneous system &7_ -1,., by using the
ot
Laplace transform.
Step 2: Compute, the integral
t el ¢
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Step 3: The solution of mitial value problem 1s
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The Inverse Problem and Inverse Technigque: The
mathematical formulation of the inverse problem is similar
to that of the direct problem given by equations (1) except
the heat-capacity c(x) is unknown function, but
everything else in equations (1) is known. To determine
¢(x) from boundary and imtial data, we need additional
temperature measurements taken at some spatial positions

and time.
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Now we consider M sensors placed in the slab
such that A-2 are placed at the locations x,.x.,...%
mside the slab and the remaining two are placed at
the boundary x, 0 and x,, 1.

measurements at these pomts, at different times
£ =1,...N) are given by:

Temperature

Yo, =T, t).m=12.Mj=1..N (7
Thus a total of MN temperature measurements are
available.
The c(x) obtained as the solution of the
minimization problem of the least-squares norm P# — ¥P?,

is

where 7 = T(x,, £;¢) 15 a solution of (1) for any given ¢(x).

In order to achieve a unique solution problem, the
unknown function ¢ (x) is parameterised by assuming that
the ¢(x) 1s taken as a set of polynomials [2, 4, 5].
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and the least-squares norm in discretised form is
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Where 7 ,© is the estimated tem perature obtained from

the solution of the direct problem (1) by using the
estimated values of the unknown parameters.

Equation (¢) is minimized by differentiating it with
respect to each of the unknown parameters ¢(i = 1,2,...M)
and then setting the resulting expression equal to zero.
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Equations (10) i3 written in the matrix form as
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This is a nonlinear system and an iterative solution

method is required. A common approach is a technique
given by

SRR O Ll SUTH SRP LNe S5 5¥ = KN abn

Where the p,'s are damping parameters and J 1s the

jacobian matrix defined by ,_ 27
ac

Clearly, for ¢, = 0 equation (11) reduces to Newton's
method.

The Solution Algorithm Ts as Follows:
Suppose C* at the k th iteration are available.

Step 1: Solve the direct problem with our method by using
the estimated values of the parameters C* = (¢, ¢a.....c00"
at the & th iterative and compute 7 .

Step 2: Solve the direct problem A more times, each time
perturbing only one of the parameters by a small amount
and compute

f(cl +Ac, 055,800 f(cl,cz +Acy,e3,...00 ),

s f(cl,cz,...,cM +Acys)

Step 3: Compute the coefficients matrix 7 for each
oo

parameter. For example, with respect to ¢, we have

iﬁz T:(cl +ACI,Cz,...,CM)—f(Cl,Cz,...,CM)
6C1 ACI

for i=1,2,.., MN and determine the matrix./.

Step 4: Compute LN ,Ltk[)_lJT(I; ~ 7

Step 5: Compute C*! according to equation (11)
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A Numerical Example: We consider a test specimen of
the final measurement time ¢,= 301, temporal temperature
readings are taken with sensors at ten locations (i.e., x, =
0,x,=0.10,x,=0.20,...,x,,= 1) over a period of 0 <¢<301.

2
y(x.t)=e ™ (~9.8696 —10.1657x — 19.6976x° )cos(rx)
S&x) = cos(mx), p(1) = 0, q(1) = 0.
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Fig. 1: Exact heat capacity c()
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Fig. 2: Numerical heat capacity c(¢f) approximated by

Inverse technique

Fig. 3: Numerical Temperature Distribution 7(x,f)

To simulate the measured temperature containing
measurement error Err are introduced to the exact
temperature as ¥ = T, + Err, where the exact T,
temperature is determined from the solution of the direct
problem by using the exact values of the Heat Capacity,
where Value of error (Err) lying in the range -0.00025 <

Err <0.00025 [4].
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