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Abstract: Linear partition codes in Arihant metric are block metric codes and are a generalization of the classical error
correcting codes endowed with the Lee metric [1, 2, 3] and has applications over non binary channel. In this paper, we
formulate the concept of a linear partition Arihant code (LPA code) and derive results pertaining to error detection and error

correction capabilities of these codes.
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INTRODUCTION

Feng, Xu and Hickernell [4] initiated the concept
of linear partition block code which is a natural general-
ization of the classical Hamming metric and is suitable
for binary channels since any digital change in one block
place is a single error, no matter what the magnitude of
the change is. Also, we know that classical Lee metric
codes [1, 2, 3] are more suitable for non binary chan-
nels as a digital change of “4¢” in one place contributes
“t” errors. Motivated by the idea to have linear parti-
tion block code endowed with a metric generalizing the
classical Lee metric, we formulate the concept of a lin-
ear partition code equipped with Arihant metric which
is a block metric generalizing the classical Lee metric
and the block metric introduced by Feng et al. [4]. We
derive basic results for linear partition Arihant codes in-
cluding various upper and lower bounds on their param-
eters and study their error detection and error correction
capabilities. Linear partition Arihant codes will find ap-
plications in phase-modulation and in the construction of
block Nega-cyclic codes and are suitable for non binary
channels.

2. DEFINITIONS AND NOTATIONS

Let ¢,n be positive integers with ¢ > 1. Let F
be the ring of integers modulo q. Let Fy be the set of
all n-tuples over . Then Fy is a module over F;. For
q prime, F, becomes a field and Fg becomes a vector
space over F'y. A partition P of the positive integer n is
defined as

P : n=ny+ns---+n, where

1<n; <ng<---<ngs>1.

The partition P is denoted as
P:n=[n]ng]---[ng.

In the case, when

P:n = [mq] - [mi][ms]---[ma]
1,- copies 13- copies
] ]
———
1,- copies
we write

P:n=[ma] " [ma]"* - [my]",

where my < mg < - -+ < My,

Given a partition P : n = [n][ns] - - - [ns] of the positive
integer n, the module space Fy over F; can be viewed
as a direct sum

Zy = Zpezpe eIy,
or
V = VioVed- Vs,

where V = Z’q’ and V; = Z;” forall1 < <s.

Consequently, each vector v € Zg can be uniquely writ-
ten as v = (v1,va, -, vs) where v; € V; = Zp+ for all
1 <1 <s.

Here v;(1 < i < s) is called the i*" block of block size

n; of the vector v.

Further, we define the modular value |a| of an element
a € Zy by

la] = a if 0< a<gq/2

a6 = g—a if g¢/2<a<q-1.
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We note that nonzero modular value |a| can be obtained
by two different elements viz. a and ¢ —a of Z, provided
{q is odd} or {¢qis evenand a # [¢/2]} i.e.

q isodd
. or
lal =lg —al if g is even and
a#q/2.
If g is even and a = [¢/2] or if @ = 0, then |a| is ob-

tained in only one way viz. |a| = a. Thus there may be
one or two equivalent values of |a| which we shall refer
to as repetitive equivalent values of a. The number of
repetitive equivalent values of a will be denoted by e,
where

1 if {¢ isevenand
a=[q/2)} or {a =0}

o =14 2 1if {q isoddanda # 0}
or {giseven,a #0

and a # [¢/2]}.

Throughout this paper, we shall use the following nota-
tions:

1. [z] = The largest integer less than or equal to x.

2. [z] = The smallest integer greater than or equal to
x.

3. @Q;=The sum of repetitive equivalent values up to 7
ie.,
Qi=eter+ - +e

where e; denotes the repetitive equivalent value of
i.

3. LINEAR PARTITION ARIHANT
CODES

Let n,q be positive integers with ¢ > 1. Let
P : n = [ng][ng] - [ns] be a partition of n. We de-
fine Arihant metric on Zy corresponding to the partition
P as follows:

Letv = (vi,v2, ++,vs) € Zy =700 o
ZZ;S. The Arihant weight of it" block v; € Zgl(l <1<
s) of the vector v corresponding to the partition P of n
is defined as

wh (vi) = o]’

where

vy = (UY)7 Uéi)7 Tt Ufz?) € Zgi'
Thus the Arihant weight of a block is the maximum
modular value amongst all its components. Then the
Arihant weight of the vector v = (v1,va,---,vs) €

2y ©ZLy? ® - - Zg+ corresponding to the partition P
is defined as the sum of Arihant weights of all its blocks
ie.

WE©) = > whw).

For any u = (u1,ua, -, us) and v = (v, v, +,vs) €
ZZ; = Z;“ &) ZZ;? ®--- P ZgS, we define the Arihant
distance (or Arihant metric) d% (u, v) between u and v as

db (u,v) = wh (u —v).

Then dﬁ is a metric on Zg = Z;“ O D ZZ;S.

If the partition P is clear from the context, we shall
denote Arihant weight by w4 and Arihant metric by d 4
only.

Definition 1. A linear partition Arihant (LPA) code cor-
responding to the partition P : n = [nq] - - [ns] isa F-
submodule of Z§ = Z3* © Zg* @ - -+ © Zy* equipped
with the Arihant metric and is denoted as [n, k,d 4; P] or
[n, k; P] code where

k = rankz_(V),

and
da = da(V)
= minimum Arihant distance
of V
= min{da(u,u) | u,u’ €V,
u#u'}.
Remark 2.
1. For P : n = [1]™, the linear partition Arihant

codes reduce to the classical Lee weight codes [1,
2, 3]. For this partition, the Arihant distance and
Arihant weight reduce to classical Lee distance and
Lee weight respectively.

2. For ¢ = 2, 3, the linear partition Arihant codes re-
duce to the linear error-block codes [4] and the Ar-
ihant metric reduces to the m-metric introduced by
Feng et al. [4].

3. In general, we have

m-metric < Arihant metric
< Lee metric,
or

m-weight < Arihant weight

< Lee weight.

Example 3. Let n = ¢ = 5. Let P : 5 = [1][2][2] be a
partition of n = 5. Then Z}! = Z3 = Z} & Z2 ® Z3.
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Let v = (1:23:41) = (viivoivg) € Z2 = ZL O Z2 0 Z2
where

v = (1) €Zi,
va = (2,3)o0r(23) € Z3,
vs = (4,1)or(41) € Z2.

Let V =< (v1,vg,v3) > be the subspace generated by
(v1,v2,v3) over Zs.

The codewords in code V' are given by

v o= (1:23:41) = (1,23,41);
wua(v) =14+2+1=4,

Ov = (0,00,00);wa(0v) =0,

20 = (2,41,32);wa(2v)
=24+1+2=5,

v = (3,14,23);wa(3v)
=24+1+2=5,

v = (4,32,14);wa(4v)
=14+2+1=4.

Thus V is a [5, 1, 4; P] linear partition code Z5 with min-
imum Arihant distance 4.

4. SOME PROPERTIES OF LPA CODES

We begin by stating two results for LPA codes
without proof as the proof is straightforward:

Theorem 4. The minimum Arihant weight and minimum
Arihant distance of an LPA code V' coincide. QED

Theorem 5. An LPA code V' corrects all errors of Ari-
hant weight t or less iff the minimum Arihant distance of
the code is at least 2t + 1. QED

The generator and parity check matrices of an
[n, k,da; P] LPA code can be viewed in terms of blocks
corresponding to the partition P. For a parity check ma-
trix H, it is viewed as

H = [HlaHZWHaHs}

where H;(1 < i < s)is an (n — k) X n; matrix and
is said to be the i*” block of size n; of the parity check
matrix H. The columns of the it" block H; are denoted
as h{" B R,

Definition 6. A set of blocks {H;,,H;,,---,H;,} C
{H1,Hs,---,H} of the parity check matrix H is said
to be linearly independent if the union of all column vec-
tors in blocks H;,, H;,, -+, H;, is a linearly indepen-
dent set. Otherwise, we say that the set of blocks of
{H;,,H,,, -, H;} is linearly dependent.

IR PR

Definition 7. A set of blocks {H;,, H;,, -, H;, } C
{H,,Hs,- -, H} of the parity check matrix H is said to

be linearly dependent of Arihant weight w if there exists
scalars agh), aé“)7 e ,aﬁfjf, a§”), A agff}

., a(1il)’ aéi’), s aS;] not all zero such that

TL'L]

My
S S

j=1 k=1
N,
+> alihin =0 (1)
m=1
and
w o= wa(al™, a0l ol
afiz), ol o)
= witwe+---+w ()
where
w; = max{la{”], "],
sl
J
foralll1 <j<I. 3)

Remark 8. We can
((JEZJ) Oéélj)

rewritten as

denote  the n;;-tuple

,aq(f?j) by «;;. Then (1) can be

i

(o7 -Hi] + ai2~Hz‘2 + -4 U‘iz-Hz‘l =0

where “." denotes the Euclidean inner product of «;; and
H;, forall 1 < j <. Also (2) can be written as

w = wa(oy,, 0, ,0,)
= wA(Oéh)—ﬁ-wA(Oéi?)‘i"“
e + wA(aiz)

= wyt+w2+-+w

where

w; = wala;,) = max{laf)[}
for all1 < j <.

The following result is now obvious:

Theorem 9. Let H = [Hy,Hs,---,H] be a parity
check matrix of an [n, k; P] LPA code V over F, with
partition P : n = [nq][ng] - [ns]. Then da(V) = d
if and only if there does not exist a linear dependence
relation between blocks of H of Arihant weight (d — 1)
or less and there exists a linear dependance relation be-
tween blocks of H of Arihant weight d. QED

We now prove a characterization of LPA codes in
terms of the parity check matrix H which will lead to the
Singleton’s bound for LPA codes.
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Theorem 10. If the minimum Arihant distance (or min-
imum Arihant weight) of an [n, k; P] LPA code over F

[Q%QH or fewer blocks of

is at least d, then every set of

H is linearly independent.

Proof. Let, if possible, there exists a linear de-
pendence relation between some r blocks of H say
d—1

ip> Hig, -+, H; } where r < |——=. Then there
W, By, B} kel

L0, (with not all zero)
(”)) € ZyY forall 1 <

exists scalar tuples vy, , aj,, - -
. 7 i

with o, = (agj),aé]), e

7 < r such that

(a7 -Hi] + Otiz.HiQ + -4 O[Z‘T.HZ‘T =0.

This implies that there exists a codeword

w= (0, Qy,,,0,-0,0)
such that
wa(u) = wala,)+wala,)+--
"+IUA(O[1‘T)
<l[g/2] + - +[q/2]
- gy
< |fm) <
< d-—1.

Thus there exists a codeword of Arihant weight d — 1 or
less. A contradiction and hence the result. QED

Corollary 11. If the minimum Arihant distance of an
[n, k; P] LPA code V with P : n = [n1][ng] - - - [nd] is
at least d, then

n—k>mn, +ng,+ -
B [d—l]
[a/21]°

ni, } C{ni,ng, -

+ 1, “)

where

and

{ni]vnizv"'7 7n5}'

Proof. Directly follows from Theorem 10. and the fact
that number of rows of parity check matrix H is n — k.
QED

Remark 12. The inequality (4) is Singleton’s bound for
LPA codes and it says that for any [n, k,d; P] LPA code
V, the number of parity check digits must be greater than

d—1
or equal to sum of block sizes of any [ ] blocks.

[a/2]
We now define maximum Arihant distance separa-
ble (MADS) codes:

Definition 13. An [n, k, d; P] LPA code V with P : n =
{n1][ng] - - - [ns) is said to be maximum Arihant distance
separable (MADS) if equality holds in (4) ie.if (n — k)

equals the sum of block sizes of any ] blocks.

[ /2]
Observation 14.
(i) If V is an [n, k,d; P] MADS code with P : n =
[n1][ng] - - - [ns], then every (n—k) x (n k) square
-1
submatrix of H comprising of any } blocks

[ /2l

of H is non-singular.

(ii) If Vis an [n, k, d; P MADS code, then the partition
P of n must be of the type P : n = [n;]" for some
positive integer r.

Example 15. Let ¢ = 5, n = 2. Let P : 2 = [1][1] be
a partition of n = 2. Let V be a [2,1; P] LPA code with
parity check matrix

H = (153)1X2 over Zs.

The generator matrix G of the code V' corresponding to
the parity check matrix H is given by

G = (2:1)1x2.

The five code vectors of the Arihant code V' are given by

vo =

v =

vy =

(0:0) or (0,0); wa(vo)
(2:1) or(2,1); wa(v)

vy = (42) or(4,2); wa(ve) = 3,
(1:3) or (1,3); wa(vs)

vy = (3:4) or(3,4); wa(va)

Therefore, the minimum Arihant weight and hence the
minimum Arihant distance of the code V is 3 i.e.
da(V)=d=3.

o ] 17

Since for the LPA code V, (n — k) equals the sum of
d—
block sizes of any { = 1 blocks, therefore, V is

:|
an MADS C()de.

S. HAMMING SPHERE UPPER BOUND
FOR LPA CODES

In this section, we obtain the Hamming sphere up-
per bound for LPA codes. To obtain the desired bound,
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we need to find V("l’ ") where V(nl’ ) s the vol-
ume of a sphere of radius d in Z” =7y DL D

- @ Zyg* corresponding to the partition P
[n1][ne] - - - [ns]. This is equivalent to finding all n =
ni +ng + - - - + ng-block vectors having Arihant weight
d or less. We obtain the number of such block vectors in
the following lemma:

n =

Lemma 16. If Vd(zl""’ns) denotes the number of all n-
block vectors over ¥, corresponding to the partition
P : n = [ni][ne] - - [ns] having Arihant weight d or
less where

1 <d < s[q/2], then

s [a/2]

vy = (e
r=r;; “i=135=0
- (Qj_mw), ®
where 1 = (Tij)i=1t05,j=oto la/2] =
(7“10,7’11,"'77“1,[q/2]77“20,7’21"'7’2,[q/2]"‘

CTs T [q/2]) Satisfies
Fora fizedi (1 <i<s),
ri; =1
for exactly one value of
7 (0<j<[q/2])
and 0 elsewhere,

and
la/2]

ZZ jrij < d. ©)

i=1 j=0

Proof. For 1 < i < 5,0 < j < [q/2]. Let 7, denotes
the probability that the i*" block of block size n; in an
n = njy + na + - - - + ns-block vector is having Arihant
weight j.

It is clear from the definition of 7;; that for a fixed
1, 73; assumes value 1 exactly for one value of j and zero
otherwise. Further, the choices for filling up entries in
a block of size n;(1 < i < s) to have Arihant weight
3 (0< < [g/2]) is given by

(60 +ep+ - )nl
_(60 +e+---+ ej—l)ni
= ()" —(Qj-1)™ @)

From (7) and the definition of 7;;, (5) satisfying con-
straint (6) directly follows. QED

Remark 17. If A(n]’ ") denotes the number of all
n=ny+ng -+ n s -block vectors corresponding to the
partition P : n = [n1][na] - - - [ns] having Arihant weight

d, then Agfq] ) given by R.H.S. of (5) satisfying

Fora fizedi (1 <i<s),

T’Z‘j =1

for exactly one value of
7(0<7<]q/2])

and 0 elsewhere,

and
s [q/2]

ZZ jrij = d. ®)

1=1 5=0

Example 18. Let ¢ = 5andn = 3. Let P : 3 =
[1][2] = [n1][n2] be a partition of n = 3. Letd = 1.
Then Vl(g] m2) g given by (using (5))

> (ﬁﬁ«@j)m

r=r;j “i=1j=0

—(Qj—l)"’)r”> )

where for 1 <14 < 2,0 < j <2,r=(r;) satisfies

Vl(,gl n2)

Fora fizedi (1 <i<2),

Tij = 1

for exactly one value of

j(0<j<2)

and 0 elsewhere,

and

2 2

S g <1 (10)

i=1;=0
There are only three feasible solutions for r =
(Ti5)i=1 to 2,j=0 to 2 satisfying (10) viz.

(7’1077‘1177’1257’20,7’21,7’22)

= (1,0,0:1,0,0),(1,0,0:0,1,0),

(0,1,0:1,0,0).

Substituting these values of = (r;;) in (9) we get
= ((Q)' = (@-1)")((Qo)?
—(Q-1)*) + ((Qo)*
—(Q-)H((@)* -
—(Q0)*) + ((Q)*
—(
—(

Vl(gl n2)

)

Q0)")((Qo)?
Q-1)%)
= H+B*-1)+B-1)
= 14+248=11.
(Note that Q1 = 0,Q0 = 1,Q1 = 3 over Z5)

These 11 block vectors of length 3 = [1][2] and Arihant
weight 1 or less are given by
(0:00), v; = (1:00),

Vo =
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Vo =

Vg =

vg =

(4:00)
(0:40)

ve = (0:11),v7 =
(0:04)
(0:44)

vio =

Now we give the Hamming sphere upper bound for LPA
codes:

Theorem 19 (Hamming Sphere Bound). Let V' be an
[n, k,d; P] LPA code over ¥ corresponding to the par-
tition P : n = [nq][ng] - [ns],n1 < ng < -+ < ng.
Then

n—=k (n1,mns)
" = Viay e

where ‘/[22171)}2]3)(1 is given by (5).

Proof. The proof follows from that fact that all the
n = ni + n2 - - - + ng-block vectors of Arihant weight
[(d — 1)/2] or less must belong to distinct cosets of
the standard array and the number of available cosets is
¢"*. QED

Remark 20. For ¢ = 2, 3, the Hamming sphere bound
obtained for LPA codes reduces to the corresponding
bound for linear error block codes equipped with the 7-
metric [1].

6. GILBERT AND VARSHAMOV
BOUNDS FOR LPA CODES

In this section, we obtain Gilbert bound, Var-
shamov bound and a bound for random error correction
in LPA codes. We derive Gilbert bound first:

Theorem 21 (Gilbert Bound). Let n, k, g be positive in-
tegers satisfying q > 2,1 < k < n. Let P : n =
[n1][n2] -+ - [ns],n1 < ng < -+ < ng be a partition of
n. Let d be a positive integer satisfying 1 < d < s[q/2).
Then there exists an [n, k,d; P| LPA code over F with
minimum Arihant distance at least d provided

n—k > log, (Vd(f]l”'q”’ns)> (11)

M)

where Vd(fllq is given by (5) satisfying (6).

Proof. We shall show that if (11) holds then there exists
an (n — k) x n matrix H over F, such that no linear
combination of blocks of H of Arihant weight (d — 1) or
less is zero. We define an algorithm for finding the blocks
Hy,Hy,- - H, of H where H; = (h{" 1", - n{)
for all 1 < ¢ < s. From the set of all q"*k columns
vectors of length (n — k) over Fy, we choose blocks of
columns of the parity check matrix H as follows:

1905

(1) The nq column vectors in the first block H; can
be any vectors chosen from the set of ¢" % column
vectors of length n — k over F satisfying

A .Hi #0,
where
A=A Al e B
and
1 < wA()\l) = wA(/\(ll)a /\(21)7
. ’/\7(11))
= max|\Y|
i=1
< d-1.

(2) The second block Hy = (h(12), hg), e h%’) can
be any set of na column vectors of length (n — k)
satisfying

A.Hy+ Mo .Hs #£0,

where for 1 <i <2,

A= (A A0y ez

and

1 < walh)+wa(A2)
= max] A0 | + max| A
a=1 b=1

d—1.

IN

(1) The I*" block H; = (hgl)7 hél), e h&f}) can be any
set of n; column vectors of length (n— k) satisfying

MN.Hi+ Mo . Hy + -+ -
+X.H; #0. (12)

where

(A(li)7 )\éi)7 ) )‘gl?) € F:IlZ
for all1 <i <1,
and
wa(A) +Fwa(Ao) + -+
-‘r’LUA(/\l)
= i AL + x| A7+
e SN

+max|, |

d—1. (13)

IN
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(s) The st" block H, = (h§5>, hés)7 o h&i’) can be
any set of ng column vectors satisfying

M.Hi+Xo.Hy + -+ Xg.Hg 7& 0.

where

for all1 <i <s,

and
1 < walh) +wa(he) +
+wA(>\ )
= rﬁlalux|A(1)\+max|A(2)\+
St max|>\£8)|
t=1
< d-1.

If we carry out this algorithm to completion, then,
H,,Hy,---,H; are the blocks of size (or length)

n1,Ma,- - -, N respectively of an (n—k) xn | wheren =
an) block matrix H such that no linear combination
i=1

of blocks of H of Arihant weight (d — 1) or less is zero
and this matrix is the parity check matrix for an LPA code
with minimum Arihant distance at least d. We show that
the construction can indeed be completed. Let [ be an
integer such that 2 < [ < s and assume that the blocks
Hq, Hs, -+, H;_1 have been chosen. Then the block H;
can be added to H provided (12) is satisfied. The num-
ber of distinct linear combinations in (12) satisfying (13)
including the pattern of all zeros is given by

(n1,
Vd 1,q

where Vd(ﬂ:;’m) is given by (5) satisfying (6).

As long as the set of all linear combinations occurring in
(12) satisfying (13) is less than or equal to the total num-
ber of (n — k)-tuples, the I** block H; can be added to
H. Therefore, the block H; can be added to H provided
that

qn k > V(n1 n)
or
n—k > logq (Vd(ﬂqnl)>

Thus the fact that the blocks H1, Hs, - - -, Hs can be cho-
sen follows by induction on [ and we get (11).QED

2] -1
Corollary 22. For positive integer t (t < —S[Q/ 2] ,

a sufficient condition for the existence of an [n, k,d; P]
LPA code V over F, where P : n = [n1][n2] - - - [ns] that
corrects all random block errors of Arihant weight t or
less is given by

n—k > log, (Vz(tyfé’.”’ns)).

Proof. The proof follows from Theorem 21 and the fact
that to correct all errors of Arihant weight ¢ or less, the
minimum Arihant weight of an LPA code must be at least
2t + 1. QED

Example 23. Let n = 3,k = 1,d = 2 and ¢ = 5. Let
P : 3 = [1][2] be a partition of n = 3. We show that
for these values of the parameters, (11) is satisfied. we
note that here ny = 1,ne = 2. Equation (11) for these
parameters becomes

n—k > lOgS (‘/1(’757;1 ,7742))7

or

5n—k 2 Vl(,g1 JL2). (14)

Now Vl(,gl’"” (where n; = 1,ny = 2) was already com-
puted in Example 18 and is equal to 11.

Thus

5nF = 5371 = 25,
Vi) =11

LHS. of (14) =
R.HS. of (14) =

Thus

51k =25 > 11 = V{1,

Therefore, by Theorem 21, there exists a [3,1; P] LPA
code V over Zs where P : 3 = [1][2] with minimum
Arihant distance at least 2.

Consider the following 2 x 3 block matrix H of a [3, 1; P]
LPA code V over Zs constructed by the algorithm dis-
cussed in Theorem 21:

We claim that the LPA code which is the null space of
the matrix H has minimum Arihant distance at least 2.

The generator matrix of the LPA code corresponding to
the parity check matrix H is given by

G=1-2: -3 11x3=[3:2 1]ixs3

1906



World Appl. Sci. J., 14(12):1900-1907, 2011

The five codewords of the LPA code V' with G as gener-
ator matrix and H as parity check matrix are given by:

vg = (0:00);wa(vo) =0,
v = (3:21);wa(v1) = 4,
vy = (1:42);wa(ve) = 3,
v3 = (4:13);wa(vs) = 3,
vy = (2:34);wa(vy) = 4.

Therefore, the minimum Arihant weight of the LPA code
V is 3 which is at least d = 2. Hence Theorem 21 is
verified.

Theorem 24 (Varshamov Bound). Let By(n, d; P) de-
note the largest number of code vectors in an [n, k; P]
LPA code V over F with P : n = [n4][ng] - - - [ng] hav-
ing minimum Arihant distance at least d. Then

By(n, d; P) > q"~ s (D1,

where L = Vd(fll:;’ns) is given by (5) satisfying (6).

Proof. By Theorem 21, there exists an [n, k; P] LPA
code over F, with minimum Arihant distance at least d
provided

qnfk > Vd(ﬁlliq,ns) =T
=n—k > logy(L)
=k < n—logy(L).

The largest integer k satisfying the above inequality is
n — [logg(L)]. Thus

By(n,d; P) > qn—flogq(Lﬂ

where L = Vd(f]lz'quS) is given by (5) satisfying (6).
QED
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