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Abstract: In this paper, we have shown solvability of the boundary value problem connected with the
Anisotropic Helmholt-Shrodinger equation with the boundary condition of the first and second type in the case
k, =k_. And find the solution of this equation with given initial condition. In general, necessary and sufficient
conditions for the correctness of the problem in the Sobolev space are presented as well as explicit formulas
for a factorization of the Fourier symbol matrix of the one-medium problem.'
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INTRODUCTION

Various physical problem in diffraction theory lead
us to study modification of the Sommerfeld half-plane
governed by two proper elliptic partial differential
equation is complementary R’ half-space Q° and allow
different boundary or transmission condition on two
half-planes, which together form the common boundary
of Q°[1].

Investigated a certain class of diffraction problems
leading to simultaneous 2x2 systems of Wiener-Hopf
equations.

First the classical Wiener-Hopf technique,
represented by Noble [2]. This type of Problems studied
by A.J.Sommerfeld for the wave diffraction on the
interface of two media [3, 1], were investigated in the
isotropic case [4, 1] and studied the problem of finding a
function u in a suitable space with satisfies [1].

In this Paper, Consider the Case of Anisotropic
Helmholtz-schrodinger Equation:

Au+ (k2 +2BZsech® (B, )| u=0 in QF "
Au+ (kz + Zﬁ_zsechz(ﬁ_y)) u=0 in Q

Where k, =k_and get the solution of the boundary value
problem and then prove solvability of this.

Convention: As a rule, upper or lower indices + are related
to the half-spaces Q" except for some standard notation

R and 4l.
H 2

Solvability of Boundary Problem in the Case k, =k:
Consider the following anisotropic Helmholtz-
Schrodinger equation

{Au+(k2+2ﬂfsech2(ﬂ+y))u=0, in QF,
(2)

Au+ (k> + 2B sech®(B_y)u=0, in Q.

Let Q"= {(x,y) e R*: >0 (y <0)} where Re (k)>0, Im(k)
> 0 and H"(Q"), H"*(Q"), are the corresponding Sobolev
spaces [5].

This equation is the particular case of the equation
(1). We suppose that the following boundary conditions
are fulfilled

agu(x,+0) + byu(x,—0) = hy(x)
ou(x,+0 ou(x,—0 in R
0 250y S
o o)
cou(x, +0) + dyu(x,~0) = py(x) (3)
ou(x,+0 ou(x,—0 in R~
¢ ( )+d1 ( )=P1(x)
o o)
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where h, eH'"*(R"), h, € H"*(R"), P, € H*(R), P, € H"*(R)
and ay,a,,by,b,,co,C1, dyyd,, are the complex constants. For
finding of the boundary value problem (2) in L*(R?), with
same boundary conditions (3) and a,,d,,= b,,c,,.

apply Fourier integral transform to the solution u €
L*(R?), over the variable x ne derives the following system
of ordinary differential equations

2~
AU (K2 + 282 sech(B.y))i = 0,for 3> 0
dy2

d*n 2.2

— +(x (A)+2Bsech“(B_y))i=0,for y<0
dy

“)

Then iéie L(R*) and one considers that Im (k)>0 we

denote y(h) = \/m =ik (A)

It follows that the general solution of the system of
ordinary differential equations (4) in the L*(R?)-space has
the following form:

i, () = 22 [ute )™

i ()= "T(ny)jwuu, e ©)
Then from eq.(4) it follows that
UA,y) =i (A, y)+i_(4,y) (N

we introduce functions

0
u_(A)= ﬁ I (agu(x,+0) + byu(x,—0) — hO(x))ei’lxdx

x,+0) N ou(x,—0)

0
(== [ 0 R HED e,

(®)

similarly

a(b) ix(A) _iﬁK+(tZI)1h(ﬂ+J’) eiyc (/'L)y’ for y>0 () —L]‘O(c U(xt0) + dgi(x,—0) — (x))ei'lxdx
(A, y) = +A)= \/E ) oULx, oULX, Po
b(h) ik(A) + B_tanh(B_y) LR »<0. .
* 3 &) = [0 g SRy e
Let y. () = 1/2(1 £ sgny) and n 0 ¥ 4 9)
So
2
a(?t){(ik(?t) — B, tanh(B, »)) —ﬁ—+2} A for >0
diu(A,y) _ ik(A)cosh” (B, ) 10)
d 2 .
g —b(?t){(ik(/l) — B_tanh(f_y)) —#}e_”((l)y,for y<0
ik(A)cosh”(B_y)
Using boundary conditions (3) and taking into account eqs.(4), (9) one derives
aga(A) +byb(A) = u_(X) + hy(A)
2 2 2 2
“a[R @B lad) b[xP00+ B Joc e a1

iK(A)

where

iK(4)

9 0
};0(1) = ﬁ J.ho(x)ei;Lde, l;l(l) = ﬁ .[hl (x)emxdx

Assume that the determinant A(4) of system (11) is not zero, i.e.
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KW +p L KWL YW Y-

A(A) = aghy +aby

ix () O T R TT)

In view of eq(11) :

1 K> (M) + B2 A A
a(A)= A {bl ix () (u_(A) + hy(R)) = by (Wf (A)+ h1(/1))

1| K+ . -
b(1) = M){al O - (A)+ hg(A) + ag (w- () + Iy (A) )

then, taking into account that

uy (1) = cpa(A) +dob(A) — py(1)

. _—cl[;cz(/l)mﬂa(x) dl[K2(}t)+ﬁ,2Jb(}t) .
w(A) = ) + ) -hA)

where
o _ 1 T iAx ~ _ 1 K iAx
P == _[[Po(x)e dx, py(A) m{plme dx

which derives the following boundary problem of Riman-Hilbert with respect to the

P _ u (D)) _ u_(A)
MM)[WJ/I)]’MM)[W_(/I)J’

(12)

(13)

(14)

1s)

Vector fouctions, which are analytical functions in the upper and lower semiplanes respectively in the vector

notations this problem takes the following form:

i, (A)=LA)u_(L)+m(A) (16)
where the matrix function L(4) is:
1 (A (D) Au(l)J (17)
LA)=——
@ A(l)[Am(/l) Ay (A)
with
_ KW+ W+ YrW-BE Y W-B
A4,(A) = ad, ix () +bicy i () =ayd, r A +bico )
A15(A) = apd = bycy,
_ KX+ B2 KXW+ B2 _ rw-B2 r-p
Ay () = (aydy = byey) ix () +bicy ix () =(ad, —biey) 7 ) X )
KW+ B] KD+, YW -BE r’ (W) - B2
Azz(l) —boCl i (/l) +a0d1 i (/l) = Ocl }/ (2’) +a0d1 y ()‘) .
The coordinates of the vector-function (3
_ o (m(A)
e _[mzwj (18)

have the following form
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_ hy() K2(A) + B2 KA+ B2 | apdy —boco 7 o\ s
my (1) A(D) {%do ix (1) +bicy ix () + AL ()= po(A),

r 2 2 2 2
mz(l): hl(ﬂ'){bocl K (2')+ﬂ+ +and K (l)+ﬂ}+aldl_blcl A _ﬁl(l)

o K2 (M) + B2 y K2(A) + B2
A1) i () ik () AR) O ix () ik ()

and the matrix function

ardy (r2 ()= B2 )+ bieg (v (1) - B2) (agdy — boco )Y (A)

aybg (72(1) - ﬂf)*’ agh (Vz(/l) - B2 )’ aiby (72(1) - ﬂf)*’ agh (Vz(/l) - ﬁf)
boer (12 (1) = B2 )+ agd; (> (1) - B2)

apby (72 ()= B2 )+ aghy (v* (1) - B2)

L) = (19)

0;

Ci» 4j

Consider the matrices . = [ai b } (i =0,1) » generated from the coefficients of the boundary conditions (2). It is

easy to verify that without loss of the generality non-degenerate cases
(i.e. A(X) # 0, det (L (A) # 0) are possible only in the following cases

Where v # 0,1 is a constant.
In all cases (1-10) the matrix function L(4) can be presented in the form

ay’(M-x.  er(d) 2
LA =| sy’ (M)-p & N)-p (20)
0; 1

Therefor we have the following cases
Da=8=1,x=p=p7 €=,
Da=5=1,x=p=Pple=-1,
Na=8=1,y=p=B>€=-1,
Ha=6=1,y=p=p>e=1,
S\a=v,6=1, =2 p=p>e=-1,
6)a:v,6:v+1,x:,83,p:ﬁ_2+vﬁ+2,e:1,
Na=1,8=v+1, y=p2p=p>+vB2 e=-1,
8)a=1,6=v,}(=ﬂf,pzvﬂf,ez—l,
9)a:v+l,6:v,x:ﬁ_2+vﬁ+2,p:vﬁf,E:—l,
10)a=v+1,6=v, y=B>+vB% p=p>e=1.
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Recall that the generalized factorization of the matrix L(A) in L*(R) is called the following representation

(/’L—ij’“
A+i)

L(A)=L,(A) L_(A), (21)
0 (A —ij"?
’ A+i

e IX(R,p) (i.e. each component of the matrix belong to L*(R,p), where p(1)=

where
1

VAZ +1

functions Lfl( ) in the upper half-plane Im (1) > 0 and LJfl( ) have the analytic continuations in the lower half-

. The matrix

X x2€Z, L

plane Im (&) <O0.
. . . ) . . .
The components of the matrix function p(A) Lfl( 2) (p(A) Lfl( 2) belong to the L*(R) and have analytic continuations

in the upper half-plane Im (A1) > 0 (lower half-plane Im (1) <0).

The factorization is called canonical, if y,_y, = 0. Let

a[/1+ /k2+§]
R(A) =——— (22)
6(7L+,/k2+xj
19
A- k2+§
R_(A)= .
( A- k24X @)
o

. ) .
It is easy to see that the components ) Lil A belong to the L* (R) and ) Lfl( 2) (p(MIE (L)) have the analytic

continuations in the upper half-plane Im A > 0 (lower half-plane Im (1) < 0).

Denote by
oo+ic oo+id
__1 [ n©ds 1L e
r+()‘)_2m' J. E-1° r‘(l)_zm f E-1° 24
where —ootic —ootid

eVA? — k>

a[/l+\/k2+xJ(7L—\/k2+pj

a 0]

kv = max{—Im fk2+£;—lm,fk2+£ , kxx = min Im\/k2+l; Im\/kz-i—ﬂ
o 6 o 1)

It is evident that r.(1) belong to the L*(R) and r,(4) (r.(4)) have analytic continuation in the upper (lower) half-plane
[6].

r(d) =

(25

k. <c<d<k.. Here

Since
ay’ (M) -x

R (MR_(A)=R(A) = ,
5 (M) -p

(26)
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r.(A) + r.(d) =r(1) (27)
and
_ _ 1
L)' (Lon@)) (Re,0)" | 2-an 0 (28)
0, 1 0, 1 Lo, 1 * o 1 ’
therefore we have the equality
(R, 0Y( L D)L () (R(A),0
L(M_{ 0, 1][0, 1 J[o, 1 ][ 0, 1]' 29

The representation (29) is canonical factorization of the matrix function L(A).
Using the equalities (28) and (29) we can write the Riemann-Hilbert problem (16) in the form

1 1
Ra) @) ii, (1) = [RO(M’ r,l(A) }7(/1) + R, r(4) i(A). (30)
0, 1 ’ 0, 1
In opened form we get the following system
) r(Mw, (A) =R (Au_(A)+r (Aw_(A)+ m) r. (AM)my(A),

R, () R, (L) (€29)]
w (L) =w_(A) +my(A).

Hence we have L% . 1 0 .
W+(//l) —E.(I;mz(x)el xdxa W_(l) —E_J;Om2(x)el xdx,
So © ©
(A)R (l) iAx 1 ilx
u,(A)= LA my(x)e”™"dx + (my (x) + 7 ()R, (x)myp(x))e " dx,
O i ]
0 0
r_(4) idx 1 my(x)  r (X)my(x) | iax
=— "7 d dx.
u_(A) R,(/l)\/g _.[O my(x)e” dx NiTS _-[O{R_ = + R o) Je X
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