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Abstract: Genetic Algorithms (GAs) are very likely to be the most widely known type of Evolutionary
Algorithms (EAs). GAs are adaptive methods that can be used in searching and optimization problems which
work by imitating the principles of natural selection and genetics. The aim of this article is to examine the
explaining power of models of exchange rate determination for Iran’s Rial against the US Dollar using monthly
data from January 1992 to December 2008. In this framework, we have estimated absolute and relative
purchasing power parity, Mundell-Fleming, sticky and flexible prices, equilibrium exchange rate and portfolio
balance as fundamental models and Auto Regressive (AR), Moving Average (MA), Auto Regressive with
Moving Average (ARMA) and Mean Reversion (MR) as technical models. Then, we’ve put each fundamental
and technical model mto the genetic algorithm system for measuring their optimal weight. These optimal
weights have been measured according to three criteria Mean Square Error (MSE), Mean Absolute Percentage
Error (MAPE) and Root Mean Square Error (RMSE). Based on results obtained, it seems that fundamental
models of exchange rate determination explain the behavior of Iran’s Rial against the US Dollar exchange rate
better than technical models. Furthermore these criteria introduce equilibrium exchange rate and portfolio

balance as optimal models.
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INTRODUCTION
Addressing data uncertainty in mathematical
programming models has been a central problem in
optimization for a long time. There are two principal
methods that have been suggested to address data
uncertainty over the years: (a) Stochastic Programming
(SP) and (b) Robust Optimization (RO). SP models
produce plans which have higher capabilities to prevent
from losses and catastrophic failures. Models such as
these have been developed for a variety of applications,
mcluding electric power generation, financial planning,
telecommunication network planning, supply chain
management, oil industry and energy system [1].
both

decision variables. An

Stochastic Programming models can include
anticipative and adaptive
anticipative variable 13 tantamount to those decisions
that must be made here-and-now and cannot depend on
future observations/partial realizations of the random

parameters. An adaptive variable corresponds to wait-
and-see decisions after some/all of the random parameters
are observed. The most famous type of Evolutionary
Algorithms (EAs) is genetic algorithms. GAs have been
applied to optimization problems m many fields, from
optimal problems, to job  scheduling,
transportation problems, pattern recognition, machine
learning. GAs are robust algorithms that are capable of
optimizing multi-model, noisy, dynamic functions. Tn their

control

application to complex design problems, however, simple
GAs may converge slowly, assessments may be
computationally mtensive, or GAs may fail because of
convergence to an unacceptable optimum.
Congsiderable research effort has been made to improve
the efficiency of GAs, which has resulted in developed
genetic algorithms. When used in economic modeling,

local

genetic algorithm describes the evolution of a population
of rules, representing different possible beliefs, in
response to experience. In a parallel to population
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genetics, these rtules undergo a selection process
whereby more successful ones become more numerous in
the population. The rules are subjected to random
mutations and to recombination of their parts. In turn,
such newly created rules contribute to the diversity of the
population. Genetic algorithms impose low requirement on
the computational ability of economic agents. They allow
for modeling the heterogeneity of agents’ beliefs. Survival
of decision rules depends on their performance, measured
by the pay-off that agents receive by employing them.
Genetic algorithm patterns  successfully mimic the
behavior of human subjects in strictly controlled
laboratory settings. There are a myriad of methods in
optimal approaches to get an optimal solution in
manyfields. Tn recent years, GAs and their combined
techmiques have been applied extensively to financial
application areas. Dempsterand Leemans [ 2] developed an
automated foreign exchange trading system based on
adaptive remforcement learning. The parameters that
govern the learning behavior of the machine learning
algorithm and the risk management layer aredynamaically
optimized to maximize a trader’s utility. Chun and Park [3]
proposed a regression case-based reasoming techmique
where concepts are examined against the backdrop of a
practical application involving the prediction of Korean
stock price mdex.

Shin and Lee [4] proposed a GA approach to
bankruptcy prediction modeling, which 1s capable of
extracting rules that are easy to grasp for users like expert
systems. Some technical trading rules using GA have
been used to analyze the profit from financial market and
some researches combined neural network, GA and
knowledge-based techmques [5, 6]. Tsakonas, et al. [7]
demonstrated the efficient use of hybrid intelligent
systems for solving the classification problem of
bankruptey. The evolutionary neural logic networks are
of hybrid  intelligent
methodology, by which evolutionary programming
techniques are used for obtaining the best possible

consisted an  innovative

topology of a neural logic network. Bhattacharyya, et al.
[8] added semantic constraints to the genetic operators in
their application for investing foreign exchange markets.
Their model represents a domain-related structuring of the
representation and incorporation of semantic restrictions
for genetic programming based on search for trading
decision models. Shin and Han [9] investigated an
mtegrated thresholding design of the optimal or near-
optimal wavelet transformation by genetic algorithms
(GAs) to represent a significant signal most suitable in
artificial neural network models.
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In the past few years researchers in the area of
exchange rate economics have turned their attention to
the analysis of transaction data in foreign exchange (FX)
markets. Until late 1990s no detailed data on foreign
exchange transactions were available for researchers and
it was not possible to conduct any empirical study of
microstructure aspects of FX markets with detailed
information on the trading activity of their participants.
More recently, however, improved data, captured by
trading platforms and data vendors, has given researchers
and practitioners access to detailed mformation on
individual transactions between FX traders. The abysmal
results of the empirical investigations of the models of
exchange rate determination, developed m the 1970s,
question the validity of the traditional asset market
approach. In fact, plenty of empirical evidence shows how
asset market models of exchange rate determination
completely fail to explain exchange rate movements in the
short-run and can only mndicate long-run trends [10, 11].

In international economics literature, there are two
approaches to the determination of exchange rates. The
first one, the fundamental approach, predicts exchange
rates based on factors offered by the framework which 1s
itself provided by exchange rates determination models.
The second approach is the so-called single-variable
approach that uses only the past behavior of exchange
rate to predict their future trend and, due to lack of
variables, this
procedure is known as the technical approach [12].

The work of Meese and Rogoff [10] showed that
fundamental exchange rate models were not able to beat
the simple random walk in out-of-sample prediction.

attention to other macroeconomic

According to survey studies techmcal analysis is the
most widely used trading technicue in foreign exchange
markets. Since the 1990s the importance of techmnical
analysis has increased more considerably than other
trading practices like the orientation to fundamentals or to
customer orders. More recently, between 30 and 40
percent of professional currency traders use technical
systems as their most important trading techmque. Since
technical trading systems are widely used in currency
markets, they are continuously monitored even by those
traders who do not believe in technical analysis. By
observing the transactions and open positions indicated
by the most popular techmical systems, a trader can draw
conclusions about the behavior of other actors and their
potential price effects. To put it differently: monitoring
technical models helps the trader to deal with Keynes’
““beauty contest’” problem, i.e. how to form expectations
about other traders’ expectations [13]. Therefore, to check
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out which model or models are the best option(s) to
evaluate the behavior of exchange rates, a tool which is
capable of addressing the needs of the present research
is required. Apparently, Genetic Algorithms (GA), as a
new technique and a powerful tool in solving complex
optimization problems, which can also find the best model
among exchange rate models, can serve this function.
Therefore, the aim of this research is to select the best
model of exchange rate.

The rest of the paper proceeds in the following steps:
Section 2 will introduce Material and Methods which
includes Introduction to Genetic Algorithms and models
of exchange rate determination. Section 3 presents results
and discussion. Finally, section 4 is this paper’s
references.

MATERIAL AND METHODS

Introduction to Genetic Algorithms: During the last two
decades there has been a growing interest in algorithms
which are based on the principle of evolution/survival of
the fittest. A common term, accepted recently, refers to
such techniques as evolutionary computation methods.
Genetic algorithms, evolutionary programming, evolution
strategies and genetic programming are among the best
known algorithms in this class. There are also many
hybrid systems which incorporate various features of the
above paradigms and consequently are hard to classify;
they are referred to just as evolutionary computation
methods. In general, any abstract task to be accomplished
can be thought of as solving a problem, which, in turn,
can be perceived as a search through a space of potential
solutions. Since usually we are after "the best" solution,
we can view this task as an optimization process. For
small spaces, classical exhaustive methods usually
suffice; for larger spaces special artificial intelligence
techniques must be employed. The methods of
evolutionary computation are among such techniques;
they are stochastic algorithms whose search methods
model some natural phenomena: genetic inheritance and
Darwinian strife for survival [14]. Figure 1 shows the
common structure of genetic algorithms.

In these algorithms a population of individuals
(potential solutions) undergoes a sequence of unary
(mutation type) and higher order (crossover type)
transformations. These individuals strive for survival. A
selection scheme, biased towards fitter individuals,
selects the next generation. This new generation contains
a higher proportion of the characteristics possessed by
the "good" members of the previous generation; in this
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Fig. 1: Flow chart of all GAs used for comparative study

way good characteristics are spread over the population
and mixed with other good characteristics. After a number
of generations, the program converges and the best
individual represents a near-optimum solution [15].

In this section, for the purpose of convenience in our
subsequent discussion, genetic algorithms with double
strings for multidimensional 0-1 knapsack problems
proposed by Sakawaand Shibano[16] are revisited with
some modifications and their computational efficiency and
effectiveness are examined through computational
experiments.

Problem Formulation: As is well-known, a
multidimensional 0-1 knapsack problem is formulated as:

Minimize cx
Subject to Ax<b
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xc {01}, 7=1,.n ()
Where ¢ = (c,,....,¢,) 18 an n-dimensional row vector,
x = (x,,....x,)" is an n-dimensional column vector of 0-1
decision variables; 4 = [g],i=1,.,m j=1,., nisan
(m=n) coefficient matrix and » = (b,,....,0,) is an m-
dimensional column vector.

It should be noted here that, in a multidimensional 0-1
knapsack problem, each element of ¢ 1s assumed to be
non-positive and each element of A and b is assumed to
be nonnegative.

Coding and Decoding: For solving 0-1 programming
problems through genetic algorithms, an individual 1s
usually represented by a binary 0-1 string of length n [17].
For handling m constraints defined by Ax<b in a multi-
0-1 knapsack problem, the
straightforward technique 1s to transform the constrained
problem into an unconstramed problem by penalizing
infeasible solutions, namely, penalty term is added

dimensional most

to the objective function for any violation of the
constraints. Based on the concept of penalty functions,
it 1s possible to define the fitness function of each
individual s by:

| mex i Ax<b 2)
ﬂ‘g)_{o zfoSb}
Fis)=—cx—6. max {0,%—@} 3
i-1,..,m ;

where a, i=1,.....,m, i3 an n-dimensional i the row vector
of the coefficient matrix A; b, is an i the element of a
vector b; and @ is a positive parameter to adjust the
penalty value.

The fitness function equation (2) or (3) 13 defined
for preventing to generate solutions by imposing
penalties on mndividuals that violate the constraints.

For multidimensional 0-1 knapsack problems, Sakawa
et al. [18] proposed a double string representation as
shown i Table 1, where gs(y) €10, T s() efl,.m} and

s(j)# sy for j= j

In a double string, regarding s(j) and g, as the index
of an element in a solution vector and the value of the
element, respectively, a string s can be transformed into
asolutionx = (x,,.....x,) as:

xz(j):gs(j)ajzl,...,n_ (4)
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Table 1: Double String
5(1)
Esiy

Tndex of variables

5(2)
&

0-1 value

Unfortunately, however, because this mapping may
generate mfeasible solutions, the followmng decoding
algorithm for eliminating infeasible solutions has been
proposed [18]. In the algorithm, =, j, (), g, and p,,
denote length of a string, a position in a string, an index
of a variable, 0-1 value of a variable with index s(7)
decoded from a string and a 5(7) the column vector of the
coefficient matrix A, respectively.

Fitness and Scaling: For multidimensional 0-1 knapsack
problems, it seems quite natural to define the fitness
function of each individual s by:

fls) - ——

c
I

(5)

Where s denotes an individual represented by a double
string and x 18 the phenotype of s. Observe that the
fitness 13 normalized by the minimum of the objective
function and hence the fitness f{s) satisfies O< fis) <1.

In a reproduction operator based on the ratio of
fitness of each individual to the total fitness such as an
expected value model, it 1s frequently pointed out that the
probability of selection depends on the relative ratio of
fitness Thus,
mechanisms have been introduced [17]. Here, a linear
scaling is adopted.

of each individual. several scaling

In the linear scaling, the fitness £ of an individual 1s
transformed into ¢ according to:

(=) (f; +b) ©®)
Where the coefficients a and b are determined so that the
mean fitness f,,.., of the population should be a fixed point
and the maximal fitness f,,, of the population should be
equal to ¢,y foew The constant ¢, usually setas 1.2 <
Cpue < 2.0, means the expected value of the number of the
best individual in the current generation is surviving in
the next generation.

Genetic Operators

Reproduction: Using several Multi-objective 0-1
programming test problems, Sakawa et al [18]
wvestigated the performance of each of the six
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reproduction operators - ranking selection, elitist ranking
selection, expected value selection, elitist expected value
selection, roulette wheel selection and elitist roulette
wheel selection and as a result confirmed that elitist
expected value selection is relatively efficient.

Elitist expected value selection is a combination of
elitism and expected value selection as mentioned below.

Elitism: If the fitness of a string in the past populations
is larger than that of every string in the current
population, preserve this string into the current
generation.

Expected Value Selection: For a population consisting of
N strings, the expected value of the number of the i the
string s; in the next population

J(s;)

> s

is calculated. Then, the integral part of N, denotes the
deterministic number of the string s, preserved in the next
population. The decimal part of N, is regarded as
probability for one of the string S, to survive; in other

N, - x N @)

N . . .
words, n _ Z v strings are determined on the basis

of this probability.

Mutation: It is well-recognized that a mutation operator
plays a role in local random search in genetic algorithms.
Here, for the lower string of a double string, mutation of
bit reverse type is adopted. The original inversion for
double strings is extended to deal with the substrings not
only between h and k but also between k and h. Examples
of bit-reverse type mutation and version are illustrated in
Figure 2.

Number of observations (in genetic algorithms:
population size) in the efficiency of genetic algorithms is
an effective and decisive parameter. For example if the
number of observations to be considered is smaller than
normal size, it may lead to early convergence [20].
Therefore, considering the efficiency of problem solving
and algorithm execution time, according to empirical
literature, the population size would be appropriate if it is
between 25 to 300 [21].

Crossover: If a single-point or multi-point crossover
operator is applied to individuals represented by double
strings, an index s(j) in an offspring may take the same
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Fig. 3: Examples of partially matched crossover (PMX)

number that an index g(;')(;j ;') takes. Recall that the

same violation occurs in solving traveling salesman
problems (TSPs) or scheduling problems through genetic
algorithms. One possible approach to circumvent such
violation, the crossover method called partially matched
crossover (PMX) is useful. The PMX was first proposed
by Goldberg and Lingle [19] for tackling a blind traveling
salesman problem. It enables us to generate desirable off
springs without changing the double string structure,
unlike the ordinal representation. However, in order to
process each an element g, in the double string structure
efficiently, it is necessary to modify some points of the
procedure. Figure 3 shows examples of PMX.

Models of Exchange Rate Determination: Theories and
models of exchange rate determination are divided into
two categories of fundamental and technical models. In
this point we aim to introduce fundamental models which
are absolute and relative purchasing power parity,
Mundell-Fleming, sticky and flexible prices, equilibrium
exchange rate and portfolio balance; also, Auto
Regressive (AR), Moving Average (MA), Auto
Regressive with Moving Average (ARMA) and Mean
Reversion (MA) are introduced as technical models.
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Fundamental Models of Exchange Rate Determination:
Purchasing power parity (PPP), as one of the basic
approaches to fundamental models of exchange rate
determination, has undergone considerable testing over
the past few decades. This theory holds that exchange
rates should be determined by countries” price levels [22].
The notion underlying PPP 1s that deviations from parity
represent profitable commodity arbitrage opportumties,
which, if exploited, will tend to force exchange rate
towards parity. This model has been viewed as an
equilibrium condition as well as an exchange rate
determination theory [23].

Another fundamental model to explain exchange rate
behavior is Mundell - Fleming Model (MFM) that has
dommated attempts to explamn the behavior of exchange
rates for a long time. This model was mtroduced by two
economists named Mundell and Fleming who extended
Keynesian model in the context of open economy. In this
model, exchange rate is determined based on capital
account, current account and balance of supply and
demand forces. A good number of studies of this model
point to the fact that the most influential factors on the
exchange rate are domestic income, money market variable
(domestic money supply), governmert
spending, domestic real interest rates and domestic taxes
[24].

Mundell - Fleming model was criticized for their non-

demestic

compliance with economic realities and with monetary
models. Monetary models are studied within the two
frameworks of Flexible Price Model (FPM) and Sticky Price
Model (SPM). In sticky price model that 13 associated with
Dornbusch’s[25] work, the short - run exchange rate
stands higher than its own long-term equilibrium, a
situation which is known as overshooting [26]. Tn this
system, there are jump variables (exchange rate and
mnterest rate) that compensate for the stickiness of other
variables (price level).

The monetary model of exchange rate is the standard
mstrument of analysis in intermnational finance. In a way
this 18 surprising as the empirical support for this model of
exchange rate behavior is dubious, if data are used for the
Post-Bretton Woods period. The Flexible Price Model
starts from the defimtion of the exchange rate as the
relative price of two currencies and attemnpts to model that
relative price in terms of the relative supply of and
demand for the currencies.

The next fundamental model 15 Equilibrium Exchange
Rate Model (EERM). The EERM approach, presented by
Willicamson [27], is based on a complete macroeconomic
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model of an economy and/or a partial equilibrium model of
foreign trade. Tn this setup the FEER is defined as a level
of the RER that 1s consistent with the simultaneous
attainment of internal and external equilibrium. In most
studies internal equilibrium is defined as closed output
gap and external equilibrium as the current account equal
to its exogenously set target.

Evans and Lyons [28] propose an alternative channel
of transmission from order flow to exchange rates.
According to their portfolio-shift model trade innovations
affect exchange rates through a portfolio-balance effect,
given that FX dealers are willing to absorb an excess
demand (supply) of foreign currency from their customers
only if compensated for by a shift in the exchange rate.

Technical Models of Exchange Rate Determination:
Technical models are entirely different from fundamental
exchange rate models. The failure of traditional macro-
based models of exchange rate determination in explaming
at least some part of exchange rate fluctuations has
stimulated economists to develop new approaches which
focus on the micro-foundations of transaction behavior
and price dynamics. Over the past decade two approaches
have become increasingly important. One of the techmcal
approaches for analyzing the behavior of exchange rates
has
hypothesis. In this model, the opportunities to obtain any

been established based on efficient market

non-normal profits in the market have been deleted;
rational expectations play a decisive role, here. For testing
the efficient market hypothesis, use of random walk
hypothesis m forecasting exchange rates 1s being
increasingly accepted as one of the more effective
methods [29].

Following Mark [31], experimental tests for absolute
and relative purchasing power parity are expressed via the
below equations, respectively:

5. =B+ B (Pt/Pt*) +U,
As, = B+ BA PP+

(8)
(%)

To apply Mundell - Fleming model, the following
regression is used [32]:

St - BD + BlYt +B2Gt + BB(i'HE) + B4Tt + BS Mt+ Ut (1 0)

The regression equation used to estimate sticky price
model and adopted by Papell[33].Rogoff]26] 1s:

S, = By + B Y, ABM, + Bt B+ T, (1)
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So, to estimate and check the behavior of exchange
rates by resorting to flexible price model this regression
can be used [34]-

S, =B + By (M, - M) + BLY, - Y +
BS(it_jt)+B4(]]t_Ht)+Ut (12)

One widely-used and comprehensive econometric
model in equilibrium exchange rate context is as follows
[35]:

Se= B+ PG/ YD)+ Bzir* + B TOT,+
B,LIB, +B.NFA, + U, (13)
In portfolio balance model, we use the below
regression [36]:
Se = Po + B M, +BzM*+ PNFA, + B4NFA1* U0 (A4
Finally, to estimate techmcal models, different
regressions can be used such as:

s
(AR): S =Bo+ B S+ (15)
i=1
g
(MA): S, = Bo+BiS, + BJ'ZUt—j (16)
J=1
P 7
(ARMA): S;=Bo+ B S 40> U, (D
i=1 -1
(MR S~ S)=0(Siy -5+ U, (18)

In these equaticns, S,and P(P,) indicate the logarithm
of domestic (foreign) price level and the logarithm of
exchange rate, respectively. Y(Y,) and i(i) are
respectively the logarithm of domestic (foreign) income
and domestic (foreign) interest rate. G and T indicate the
logarithm of domestic government expenditure and the
logarithm of tax revenue, respectively. M(M,) is the
logarithm of domestic (foreign) money supply. IL (IL")
indicates domestic (foreign) inflation rate. TOT,and LIB,
are respectively terms of trade and trade liberalization
index. Finally, NFA(NFA,") is the logarithm of domestic
(foreign) net foreign assets.

Tn this study, after estimating each and every one the
fundamental and technical models, the models enter the
genetic algorithms system for being evaluated for their
weights. Optimal weights of each model will be measured
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according to these three criteria: mean square error (MSE),
mean absolute percentage error (MAPE) and root mean
square error (RMSE).

Let 4 and ; be the actual and fitted exchange rate

respectively, three criteria are then defined as:

MSE :li(At—fit)z (19
i

ME—{EMM]XNO (20)
=1

(21)

RMSE — ‘/%2(4—4)2
t=1

In other words, the objective function m genetic
algorithms 13 determined through the procedure that the
model which has a higher mean square error (MSE), mean
absolute percentage error (MAPE) or root mean square
error (RMSE), will be given less weight.

RESULTS AND DISCUSSION

We have used monthly data from January 1992 to
December 2008 for Iran’s Rial against US Dollar for
estimation purposes. End-of-period exchange rate data
were collected from and certified by the Federal Reserve
Bank of New York. Gross Domestic Product (GDP),
government expenditure and taxes, total exports and
imports were collected from the TMF’s International
Fmancial Statistics, OECD’s main economic ndicators and
WDI (World Development Index). Money supply, mterest
rates and consumer price indices are drawn from Central
Bank of Tran. Net foreign assets are used as the sum of
export and import. All data are measured in constant 2000.
The consumer price indices also use 2000 as base year.
Results of regressions estimation for Models of Exchange
Rate determination (Technical and Fundamental) are
summarized in Table 2.

Table 3 below summarizes the performance of the
exchange rate models. Results based on genetic
algorithms show that fundamental models of exchange
rate have produced better results than the technical
models of exchange rates. Equilibrium exchange rate
model, portfolio balance model and monetary models
(sticky and flexible) were identified as the best models of
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Table 2: Results ofestimations for Models of Exchange Rate Determination

Fundamental Models Technical Models

APPP RPPP MFM SPM FPM EERM PBM AR MA ARMA MR
INTERCEPT 0.2 0.09™ 0.06 9.58™ 8.78" 9.59™
Trend -0.003 0.0001"
P/P” 0.008
APP) -0.01"
Y -0.02 -0.07"
G 0.06™
T 0.02™
M -0.004 0.001 0.01"
M" 0.005
i 0.07"
i 0.001"
II 0.02
i-1I -0.02
(M -M") -0.01"
(Y-Y" -0.04
(i-i" -0.0005
(II- 11 -0.03
G'Y 0.008
TOT -0.02"
LIB -0.10
NFA 0.05™ -0.01"
NFA" 0.03
S(-1) 0.97" 0.98™ 0.98™ 0.97" 0.98™ 0.97"
AR(1) 0.99" 0.99™
MA() 0.95™ -0.02
DS8(-1) 0.66™
DS(-2) 0.33"
R? 0.9960  0.211 0.9961 0.9961  0.9960 0.9962 0.9961 0.9960 0.7197 0.9960 0.960
F 25008™ 0.810 8791™ 10331™  10201™ 7643 12002™  50890™ 522" 25341™ 13452"
D.W 2.02 2.05 2,12 2.03 2.05 2.08 2.07 2.05 0.22 2.00 1.93
sSC 1873 1557 11.72 1831 16.20 11.46 1442
FF 277 0.21 0.86 1.06 1.17 2.95 1.37
HS 1.74 1.54 1.81 1.66 1.59 1.65 1.66
APPP (Absolute Purchasing Power Parity), RPPP (Relative Purchasing Power Parity),
MFM (Mundell - Fleming Model),SPM (Sticky Price Modes),
FPM (Flexible Price Model), EERM (Equilibrium Exchange Rate Model),
PBM (Portfolio Balance Model), AR (Auto Regressive),
MA (Moving Average), ARMA (Auto Regressive with Moving Average)
MR (Mean Reversion)DW (Durbin-Watson Test)
R? (R- Square)
*#: Significant at 10 percent.**: Significant at 5 percent.
Table 3: Performance Matrix for Exchange Rate Models Using Genetic Algorithm
Criteria
MSE MAPE RMSE Result
Moadel Amount Weight Rank Amount Weight Rank Amount Weight Rank  Final Ranking
Fundamental APPP  0.000511 0.098797 6 0.001304 0.096426 2 0.001587 0.094850 6 5
RPPP  0.001471 0.096538 10 0.003441 0.090568 10 0.002692 0.091262 10 10
MFM  0.000502 0.098819 5 0.001375 0.096233 8 0.001572 0.094897 5 6
SPM 0.000498 0.098827 3 0.001355 0.096287 6 0.001567 0.094915 3 4
FPM 0.000498 0.098828 2 0.001369 0.096248 7 0.001566 0.094917 2 3
EERM  0.000495 0.098835 1 0.001354 0.096289 5 0.001562 0.094930 1 1
PBM 0.000501 0.098821 4 0.001287 0.096471 1 0.001571 0.094901 4 2
Technical AR 0.000515 0.098787 8 0.001321 0.096380 3 0.001593 0.094828 8 8
MA 0.036010 0.015245 11 0.019819 0.015680 11 0.013319 0.056768 11 11
ARMA 0.000515 0.098788 7 0.001328 0.096359 4 0.001593 0.094830 7 7
MR 0.000971 0.097715 9 0.002532 0.093059 9 0.002187 0.092902 9 9
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exchange rate determination; also moving average model,
relative purchasing power parity and mean reversion
model were the weakest models of exchange rate
determination.

Briefly we have examined the explaining power of the
fundamental and technical models of exchange rates for
Rial/USD using menthly data from January 1992 to
December 2008. For this purpose, fundamental and
technical exchange rate models and factors affecting them
were presented based on their own theoretical
frameworks. Next, genetic algorithms and how 1t works
was described briefly. In the next step, exchange rate
determination models were estimated. Later, optimal
welghts of these models were extracted using genetic
algorithms. Weight of each model was calculated
according to the three criteria of mean square error (MSE),
mean absolute percentage error (MAPE) and root mean
square error (RMSE), n a way that, if a model has larger
amounts of these three criteria, it will have less weight.
The results showed that according to mean square error
(MSE), equuilibrium exchange rate, sticky and flexible price
models well explained the behavior of exchange rate.
Mean absolute percentage error (MAPE) criterion
introduced Portfolio Balance, absolute Purchasing Power
Parity and Autoregressive models as optimal models.
Also, according to root mean square error (RMSE),
equilibrium exchange rate, sticky and flexible price
provided sensible explanations for the behavior of
exchange rate. Therefore, it seems that fundamental
models of exchange rate determination have higher
explanatory power than technical models. In other words,
Rial/TISD exchange rate for the period 1992 to 2008 is
affected by the fundamental varables, especially “net
foreign assets”, “Commodity terms of trade” and “foreign
and domestic money supply”, not by its past valuesin
Tran economy. We finally note that these results are
consistent with findings from Frankel and Moosa [37]
and Taylor and Allen [30)]. Exploring new approaches are
left for future research.
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