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Abstract: This paper presents a new application of the variational iteration method (VIM) for finding multiple

solutions of boundary value problems of ordinary differential equations. In details, we consider numerical
solution of the Sturm — Liouville problem with one classical and another nonlocal boundary condition. All
possible real eigenvalues can be obtained by starting the VIM algorithm with one initial approximation and
Lagrange multiplier. Then, the & th order approximate solution obtained by the VIM 1s a function of
eigenvalues, say A. [mposing the nonlocal boundary condition, eigenvalues become the roots of a function.
By plotting this function, positions of the roots can be seen in the real line. Therefore, the existence,

uniqueness and multiplicity of eigenvalues depend on the nonlocal conditions. So, the proposed method is

tested via different parameters of the nonlocal conditions. The results are in complete agree with the theory

confirming the accuracy of the method.
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INTRODUCTION

The variational iteration method, was proposed
originally by He [1-6]. The method has been successfully
applied for numerical solutions of many linear and
norlinear engineering problems [7-18]. The successful
application of the method is due to its flexibility,
convenience and accuracy. For more useful applications
of the method the reader is referred to the references
[19-29].

Problems with non-local boundary conditions arise
in the modeling of various processes in science and
engineering. Theoretical mvestigations of these kinds of
problems can be seen mn the literature in many papers
such as [30-32]. There exist also many papers on
numerical solutions of these kinds of problems, see for
example [33-34]. Sturm-Liouville problems with nonlocal
conditions are closely linked with boundary wvalue
problems for ODEs and PDEs with nonlocal conditions. Tn
this paper, we investigate the following nonlocal
Sturm-Liouville problem:

—u"=lu xe(0]1) (1.1)

With the classical condition

u(0) = (0), (1.2)
and the another nonlocal two-point Samarskii-Bitsadze-
type boundary condition

u(l) = yu(d) (1.3)
with ¥ € R and £ € [0, 1]. Tn this paper, we are interested in
numerical investigation of this problem by the variational
iteration method. It has been proved m [32] that for real ¥,

a urique negative eigenvalue exists for y>€l and multiple

positive eigenvalues exist. This fact has been shown
numerically m this paper.

Basics of the VIM: The idea of the method is based on
constructing a correction functional by a general
Lagrange multiplier and the multiplier is chosen m such a
way that its correction solution 1s improved with respect
to the initial approximation or to the trial function.

To illustrate the basic concept of the variational
iteration method, we consider the followmng general
nonlinear system.

L{u(x) HNTu(x)] = glx) (2.4)
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Where L is a linear operator, N is a nonlinear operator and
g(x) is a given continuous function. According to the
varlational iteration method, we can construct a correction
functional in the form.

()=, (x)+ I/’L(S)[Ltft,2 (s)+ Vi, (51— g(s)] ds
0

Where #,(x) is an initial approximation with possible
unknowns, 4 is a Lagrange multiplier which can be
dentified optimally via the varational theory, the
subscript # denotes the n th approximation and &, is

considered as a restricted variation, i.e., g3, -o.

The successive approximations w,(x).r=1, of the
solution wu(x) will be readily obtained upon using the
obtained Lagrange multiplier and by using any selective
function #y(x). Consequently, the exact solution may be
obtained by using.

u(x)= lim #u,{x).

For the convergence of the sequence obtained via
the VIM and its rate, we recall Banach's theorem:

Theorem 1: (Banach's fixed point theorem)
Assume that X 1s a Banach space,

A X-X
1s a nonlinear mapping and suppose that

Je{u)- ] < k7 23

, VuuelX

for some constant ¢ < 1. Then 4 has a unique fixed point.
Furthermore, the sequence

Uy = Alut,] (2.6)

with an arbitrary choice of u; € X converges to the fixed
point of 4 and

2
ot — a1y < g — a1 Z 1
J=1-1

According to the above theorem, for the nonlinear

mapping

Alu]=u(x)+ ALy (5)4 N3 () gs)] s,
0

a sufficient condition for the convergence of the
variational iteration method is strictly contraction of A.
Furthermore, sequence (2.6) converges to the fixed pomt
of A4, which 15 also the solution of the nonlinear
differential equation (2.4). In the above theorem, the rate
of convergence depends on y and therefore, in the
variational iteration method, the rate of convergence
depends on A.

Simulations for Nonlocal Sturm-Liouville Problem:
For the boundary value problem (1.1), according to the
variational iteration method, the non-linear terms have to

be considered as a restricted variation. So we derive a
correction functicnal as follows:

()=, (x) + J.ﬂ,(s)[fu " (8)— Adh, (s)] ds,
0

and writing the stationary condition of the above
correction functional the Lagrange multiplier, can be
identified as follows:
A=5—x
As aresult, we obtain the following iteration formula
x

#, o (x)=u, (x)+ j(s - x)[u”n (s)—Au, (s)]ds. (3.7)
0

Now, we begin with the initial approximation:
#(x) =x.

By the variational iteration formula (3.7), we have

Axl
w(xX)=x ",
1 (%) p
y (x)*x—lxg AP
z 6 120 °
A0 AT 3K
Uy (X)=x——— + .
[§] 120 5040
and so on.

To the N th order approximate solution u,, which still
depends on the eigenvalues A Condition (1.3) reads.

u(1)=u(1:4) = yau(E) (3.8)
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The eigenvalues A should satisfy the equation (3.8)
and so to see the behavior of the eigenvalues and their
positions, we can plot the function.

AA) = u (1A -yl 5).

and any zeros of this function 1s an eigenvalue of the
problem. Now, we study the behavior of the eigenvalues
with various parameters y and &

31Casel: y=0

In this case, the problem becomes the classical two
point sturm-liouville problem. the exact eigenvalues and
eigenfunctions are as follows:

Ay = (k) u, = sin(kmy), k € N,

and therefore all eigenvalues are positive and multiple
eigenvalues exist. To see the solution of the VIM, the
function f becomes:

SA) = u,(1;4)

The zeros of the function £ which are the eigenvalues
of the problem can be seen in the Figure 1. To obtain the
numerical approximation of the eigenvalues, one should
find the roots of the function £ Tt can be done easily by an
mitial approximation from the figure and using suitable
software such as MATHEMATICA.

Table 1: The eigenvalues with different y for Case 2

The eigenvalues are obtained as follows:

A, = 9.8696044010 8936,
Ay = 394784176043 57425
A, = BB.8264396097 9966,
Ay =157.9136704173 8633
As = 246.7401 100289 5259,

and so on.

3.2 Case 2: §:1
2

After implementing the VIM, the function f1s plotted
for different values of y i1 Figures 2 and 3. In Figure 2, the
plots have been done near origin. Because x + —oo then

flx) = o=, one can see from Figure that for y>é: 2 aunique

negative eigenvalue exists and for T:ézzgizo 18 an
eigenvalue. Also for T<é:2, there 1s no negative

eigenvalue. In all figures, g in the legend means .
From Figure 3, it is observed that between two

eigenvalues of the case y>l: 2, there exists one
¢
eigenvalue for the case T<€l: 3.

The first 6 eigenvalues for different y are presented
in Table 1.

=1 y=2 r=3
A 4.386490844928605 0 -3.7050371292351088
Az 39.47841 760435735 39.47841760435747 39.4784176043574
As 109.66227112319947 157.90316689026628 157.91367041755765
Ay 157.91367041786359 355.3057584101483 355.305758412833
As 214.938051399216 432.3768793585701 431.6548226231149
A 355.305758839007247 986.9360070287219 986.9396926487374
Table 2: The eigenvalues with different y for Case 3

r=2 y=4 y=6
A 3.761557819667 7656 0 -2.837513659548815
A? 157.91367041 744587 157.91367041753804 157.91367041750567
A 537.8918061942263 632.7928884131129 631.6548449966419
A 631.6445415029861 1416.0612747611476 1413.9317209847125

Table 3: The eigenvalues with different y for Case 4.

y=0.5 y=1.5 y=2.5
Al 6.903116129815923 0 -7.168417703187119
A? 34.99371 560874429 29.92560160385297 27.47118668127791
A? 88.82643960980309 88.82643960980923 88.82643960980508
A 167.28854458521778 179.00101722631928 185.18473050672966
A 263.1590504996487 355.32016939148554 355.3057584188885
AS 355.3057584125378 591.4616873957532 580.3691417617187
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Fig. 1: Plot of the function [ for Case1,B= f(A)and A= A .
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Fig. 2: Plot of the function f(/l) with y=11.5,....3.5, B= f(/l) and A= A .
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Fig. 3: Plot of the function f(/l) withy = 1,2, one bigger than 2 and another smaller than2 , B= (/’L) and A= A .
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Fig. 4: Plot of the function f(A) with ¥y =12,...,7,B= f(4)and A= A
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Fig. 6 Plot of the function f(/l) with Y= 2,4,6 in the interval [500,700],B= f(/l) and A= A .
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Fig. 7: f(A) with y=0.5,1,....3, B= f(A)and A= A
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Fig. & f(/l) with various ¥ inthe interval [0,600], B= f(/l) and A= A .
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Fig. 9 f(A) with various ¥ inthe interval [100,400], B= f'(A)and A= A
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3.3 Case 3 §=l
4

The behavior of the eigenvalues in the case of 5:1
4

is similar to that of - 1 After implementing the VIM, the
2

function £ 1s plotted for different values of y in Figures 4,

5 and 6. From Figure 4, it can be seen that for . ><fl: 4 one
negative eigenvalue exists. For - é —4,A=0 13 an
eigenvalue and for <é= 4 there 1s no negative

eigenvalue. Figures 5 and ¢ are presented to show the
behavior of the eigenvalues. In Table 2, the eigenvalues
with different y are presented.

In Figure 6, we have restricted the domain m the
Figure 5 to see the behavior of eigenvalues more clearly.

3.4 Case 4 g:::E
3

2 after implementing the VIM, to show the

For s_

=3

location of the smallest eigenvalues, the function f is
plotted for different values of y in Figure 7. Agam, it can

be seen that for Y>é:E one negative eigenvalue exists.
2
1 3 : : 13 .
For T:EZE’AZ o 18 an eigenvalue and for T<E:E there is

no negative eigenvalue. From Figures 8 and 9,
the behavior of positive eigenvalues can be seen.
Table 3 presents the first six eigenvalues with
different y.

In Figure 9, we have restricted the domain m the
Figure 8 to see the behavior of eigenvalues more clearly.

CONCLUSIONS

A very efficient mumerical method was presented to
obtain multiple eigenvalues of a nonlocal Sturm-Liocuville
problem. The method was tested for different values of
the parameters in the nonlocal boundary condition. We
started the VIM algorithm with one initial approximation
satisfying in the classical boundary condition and using
the nonlocal boundary condition all eigenvalues were
obtained. The mmplementation of the same algorithm
proposed 1n this paper for finding multiple solutions of
the nonlinear boundary value problems 13 our proposed
direction for future research.
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