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Abstract: If A is a symmetric matrix (complex Hermitian) then the Sylvester law of inertia provides us with
diagonal pivoting factorization for compute the inertia of A. This factorization requires #'/6 flops,when A is a
large and sparse matrix, this factorization is not useful [1-3]. In this paper we develop an algorithm based on
Kiylov subspace method for computing the exact inertia of a real symmetric (complex Hermitian) matrix without

computing the eigenvalues which requires only »7'n flops. The implementaticn of the final algorithm has been
tested by numerical examples, the results show that the algorithm converges fast and works accurately.
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INTRODUCTION

Tnertia of a complex Hermitian or a real symmetric
matrix is defined as the number of positive, negative and
zero eigenvalues of the matrix. It 15 well-known that the
system of differential equations F®O=A g
asymptotically stable (that 18, x(f) - 0 @s t ~ ) 1f and only
if all eigenvalues of 4 have negative real parts.
Determination of the stability of second-order differential
equation arising 1 vibration and structural analysis is one
of the most important issues in engineering. K.V.
Fernando describe an algorithm in floating point
arithmetic to compute the exact inertia of a real symmetric
tridiagonal matrix [4]. There are reliable algorithm to
transform real symmetric matrices and complex Hermitian
matrices to the real symmetric tridiagonal format. Our main
task in this paper 1s using Amoldi, weighted Amoldi and
block Amoldi methods to develop an efficient algorithm
for computing the inertia of symmetric matrices, not
necessarily tridiagonal matrix.

Definition
Definition 2.1: An equilibrium solution of the system
)= Ax{thx(0)=xp is the vector x, satisfying:

Ax,=0

Clearly x, = 0 is an equilibrium solution and it is the
unique equilibrium if and only if 4 is nonsingular.

Definition 2.2: An equilibrium solution x, is said to be
stable, if for every £ > 0, there exist a real number & > 0,
such that ||x(#) — x| < & whenever |Jx; —x,|| < 8.

Definition 2.3: An equilibrium
asymptotically stable if it 1s stable and there exist a 8> 0
such that ||x(¢) —x, || -~ 0 as £ ~ =, whenever [jx, —x,|| < 8.

solution x, 1s

Definition 2.4: The i=Axit)x(0)=xp 13
asymptotically stable if the equlibrium solution x, = 0 18
asymptotically stable.

system

Definition 2.5: The inertia of a matrix order n, denoted by
In(4), is a triplet (70(4),m(4),8(A)) where 7(4),w(4) and &)
are, respectively, the number of eigenvalues of 4 with
positive, negative and zero real parts.

Note that 7(4) +v(4) + & (4) = nand A4 is a stable matrix if
and only if 7n(4) = (0,n,0).

Theorems

A necessary and sufficient condition for the equilibrium
solution x, = 0 of the homogeneous system
i{ty= Ax(1).2(0)=x9 to be stable 1s that all the eigenvalues of
the matrix 4 have negative real parts Proof in [5].

(The Sylvester Law of Inertia): Let 4 be a Hermitian matrix
and P be a nonsmgular matrix. Then In(4) = In(PAFP*)
Proof in [6].
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Remark 3.1: Using the Sylvester law of inertia, the inertia
of a given Hermitian matrix 4 can be computed in terms of
the diagonal matrix D associated with its triangular
factorization 4 = LDL*, where L is a nonsingular lower
triangular matrix and D is diagonal matrix with p positive,
q negative and r zero diagonal entries (p + g + » = n). Then
by the Sylvester law of inertia,

In(4) = (p.q.r)
Inertia of a symmetric tridiagonal matrix:

Let
o B
B
T= E
Ay B
And B oy
z,=0> (i=12,.,n-1)

We make the UDU" factorization of a symmetric triangular
matrix 7. We use v to denote the number of negative
diagonal elements of D, which according to the Sylvester
inertia theorem gives the number of negative eigenvalues
of 7. Similarly 7 is the number of positive elements of D
and it indicates the number of positive eigenvalues of 7.
A simple algorithm exists for computing the diagonal
elements of the matrix D. [7, 8].

Lemma 4.1: The diagonal elements of diagonal matrix D
in UDU" factorization of T are given by:

d=a fori=I1
;-1

d;, -1

1

@.1)

dl =06,-—

fori=23,...n

K.V. Fernando by using this lemma and floating point
arithmetic describe the following algorithm to compute the
exact inertia of a real symmetric tridiagonal matrix [4].

Inertia of a Symmetric Matrix: The Arnoldi process is an
orthogonal projection method in a Krylov subspace. This
method also uses for non symmetric matrices; the result
is a Hessenberg matrix. If the matrix is symmetric then we
obtain a tri-diagonal matrix. In general we have three
Arnoldi methods; they are Arnoldi, weighted Arnoldi and
block Arnoldi. From combination of these algorithms by
algorithm 1 we can obtain new algorithms for inertia
problem.

Algorithm 1 (inertia of asymmetric matrix)
choose a vector v
v =v/|vlp
choosa a scalar t (shift)
forj=1,..n
w=v,;
forl=1,..j
hl,./ =(w.v)p
w=w — };f,f";l
end{ for}
hiz; =llwllp if hj ;=0 stop
Vi = W/h/+l,j
end{ for}
fori=1,...n
o; =h; and a = (04,0,,....0,)
foti=1,...n-1
72
zi=h and 2= (21,230, 20_1)
(v,m,6) = inertia (a,z,7T)

Remark 5.2: Let the matrix 7, <r™" be the Hessenberg
matrix whose nonzero entries as the scalars 7,

constructed by the weighted Arnoldi process. Let us
define the matrix 7, cg(m+hxm by

- (4,
hm+l,mem

It is known that the matrices built by the Arnoldi
process satisfy the following relations

Tpy =1, AV, =V, A, and i, =V DAy, [9]-
Numerical Test 1:

At first let A be a 10 x 10 matrix as:
-1 =21 =12 15 =13 -142

=21 -1 =21 -12 1.5 -13-142

-1.2 -21 -1 -21 -12 15 -13-142
5 ~12 =21 -1 =21 -12 15 =13 -142

1= -13 15 -12 -21 ~1 -21 ~1.2 15 ~-13-142
-142-13 15 -12 =21 -1 =21 -12 15 -13

-142-13 15 -12 -21 -1 -21 -12 15

-142-13 15 -12 =21 -1 -21 -12

-142-13 15 -12 -21 -1 -21

~142-13 15 ~12 =21 -1 Lo
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Table 1: Shows implementation of algorithm 3 with different value of 1

n Error Shitt interval (1) Tng(A) situation time
10 3.9792 [0,3.8] (8,2,0) exact 0.001231
16 44023 [0,1.9] (12,4,0) exact 0.002358
32 4.4863 [0,1.14] (24.8,0) exact 0.009025
64 4.564 [0,. 04] (45,19,0) exact 0.035277
128 47443 [0,.02] (90,38,0) exact 0.150856
256 4.7743 [10e-13,.02] (178,78,0) fail 0.771581
We apply algorithm 1 to find the inertia of 4 and then this  forj=1....,2
algorithm has been tested when the dimension of matrix A4 w=Hy,
increases. The results are shown in Table 1. fori=1,..j

In table 1 the column of error is the precision of
transforming the matrix 4 to a tri-diagonal matrix. Note that ;}w = (wi,)p
ifthe error is small, then the inertia of 4 can be computed
correctly. But if the error 1s not small, this dose not mean W= — ];l’jf;i
that the inertia of 4 cannot be computed, in this case by
choosing a proper shift the inertia of 4 will be computed. end {for}
Shift intervals are seen i table 1. The best case 1s when
the shifted parameter is zero. ]}ﬁl,j = |wlp i ];j+1,j =0 stop

As the results show although by increasing the
dimension of the matrix the error also increases. The other
good point m this algorithm 1s that when 7= 0 then In (4)
can be computed very accurately. Note that when n=256
then v = 10F — 13. Recall that for any r belong in shift
mterval the value of In(4) can be computed, but the most
important point is that when v = 0, In (4) must be
computed (zero 13 1 the shift mterval).

Now we modify the algorithm 1 in the way that when
n 1s large, works accurate. Our 1dea 1s in Amoldi method
mstead of using an iitial vector we use a block of
vectors, i other words a matrix. In this way the error of
similarization decreases. We must also use Arnoldi or
Weighted Aroldi methods in new algorithm to have a tri-
diagonal form.

Algorithm 2: (block krylov subspace method)
Choose an unitary matrix V, of dimension n < r
forj=1,.,mdo

fori=1,..jdo
H,= | AV,
;
W, = AV, - ZVkaJ
F=1
compute the QR decomposition W, =V, .,
end do
end do
choose a vector v
‘71 =v/|| VHD

choose a scalar T (shift)

vj+1 = W/hj+l,j

end {for}

fori=1,..n

i = /;” and a=(ay,a9,....d,)

fori=1,..n-1

72
z, :hl,Hl and 7= (2),24,...4,_1)

(v, m, &) = mertia (¢, z, T)
end

Remark 5.3: After implementation of the above block
algorithm we have:

U, = [ViVan V]

H,=(H,))

E. = mairix of the last r columns of 1,
AU, =U, H, +V, H, ., E, (seel9])

There are two parameters in this algorithm that they
have important tole in accuracy and speed of this
algorithm for computing the mertia of matrix.

Numerical Test 2: In this test we set n=512, winch 1s the
dimension of 4, and use block Krylov subspace method
to compute the value of In(A). The results are shown in
Table 2.
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Table 2: Shows implementation of algorithm 2 for n=512 with different value of r, m

r m error Shift interval (1) Iny(A) situation time
1 512 246.57 [.11,.15] (336,176,0) fail 6.878495893
2 256 83.644 [.09,.095] (344,168.0) fail 4082044034
4 128 20.791 [.023,.025] (354,158,0) fail 3.107915265
8 64 1.177 [10E-04,3.0E-3] (355,157,0) fail 2.685232904
16 32 6.27E-07 [10E-09,3.0E-3] (356,156,0) fail 2581601718
32 16 4.52E-09 [10E-12,3.0e-3] (356,156,0) fail 2.567660821
128 4 1.30E-09 [10E-13,3.0e-3] (357,155,0) fail 2.522569521
256 2 3.67E-09 [0,3.00e-3] (358,154,0) exact 2.501321558
Table 3: Shows implementation of algorithm 1 and block Krylov subspace method for different value of »
Algorithm1 Block Krylov Subspace Method
n Error Shift interval( ) Iny(A) situation time Error  Shift interval (7) Iny(A) situation time
10 3.9792 [0,3.8] (8,2,0) exact 0.0012311 5.26E-13 [0,3.8] (8,2,0) exact 0.0004675
16 4.4023 [0,1.9] (12,4,0) exact 0.0023582 1.20E-12 [0,1.9] (12,4,0) exact 0.0016276
32 44863  [0,1.14] (24.,8,0) exact  0.0090254 8.95E-11 [0,1.14] (24.,8,0) exact 0.0056336
64 4564 [0,.04] (45,19,0) exact  0.0352767  4.34E-11 [0,.04] (45,19,0) exact 0.0151446
128 4.7443 [0,.02] (90,38,0) exact 0.1508556 9.41E-10 [0,.02] (90,38,0) exact 0.0637092
256 4.7743 [10e-13,.02] (178,78,0) fail 0.7715805 1.21E-10 [0,.02] (179,77,0) exact 0.3424205
512 47933 [10e-12,.003] (356,158,0)  fail 53165374  3.67E-09 [0,.003] (358,156,0) exact 2.5013216
1024 48505  [10e-11,00001]  (715,309,0)  fail 38.603636 1.84E-08 [0,.00001] (717,307,0) exact 18.726558
300 As the results show when m decreases or r
350 increases the error decreases and minimum shift for
computing the exact value of /n(4) tends to zero.
200 (Fig. 1 and Fig 2). Thus for computing /n(4;,,.5,) by
- algorithm 4 it is sufficient to have m=2 and r=256. In table
4 the results show that when higher dimensions used the
100 model works well.
o0 Numerical Test 3: Let A is the same matrix that
o used in numerical test 1 and we increase its
DY var YAy Y 14 ¥ v dimension orderly. We apply algorithm 1 and block
-50

Fig. 1: Shows the decreasing of orthogonalization error
when m decreases and n=512
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Fig. 2: Shows the decreasing of minimum shift for
computing /n(A) when m decreases

Krylov subspace method to find the exact inertia
of A with different value of n. the result has been shown
in Table 3.

CONCLUSIONS

As the results show algorithm 1 for large dimensions
takes a lot of time to do the job, but block Krylov
subspace method works fast and very accurate. Not that
in algorithm 2 we select m=2 and r=n/2 for any value of n.
for example when n=1024 for computing the inertia of A
with algorithm 4, it is sufficient m=2 and r=512 and it is a
computation remarkable point in this algorithm. Since

weighted Arnoldi process requires 7 mN,. +§ m2n flops

and block Arnoldi process requires 2mN,, + 2m’n that N,
is the number of nonzero elements of the matrix A4, thus
the total number of operations for block Krylov subspace
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method is approximately SN,,+/8n that with comparison
diagonal pivoting factorization, block Krylov subspace
method 1s a robust algorithm for computing the inertia of
a large and sparse symmetric matrices.
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