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Abstract: A comprehensive study of MHD two dimensional boundary layer stagnation point flow with
radiation effects towards a heated shrinking sheet immersed m an electrically conducting viscous
mcompressible fluid m the presence of a transverse magnetic field 1s analyzed mumerically. The governing
continuity, momentum and heat equations together with the associated boundary conditions are first reduced
to a set of self similar non linear ordinary differential equations and are then solved by a method based on finite
difference discretization. Some unportant features of the flow and heat transfer in terms of normal and horizontal
velocities and temperature distributions for different values of the governing parameters are analyzed,
discussed and presented through tables and graphs. The present investigations predict that the reverse flow
caused due to shrinking of the sheet can be stopped by applying a strong magnetic field. The magnetic field
enhances the shear stresses and decreases the thermal boundary layer thickness. The heat loss per unit area
from the sheet decreases with an increase in the shrinking parameter. The thermal boundary layer becomes
thinner with increasing values of the radiation parameter. The present results may be beneficial in flow and

thermal control of polymeric processing.

Key words: MHD stagnation flow - Heat transfer - Shrinking sheet - Radiation - Finite differences

INTRODUCTION

MHD stagnation point flows with heat transfer
effects applications in many manufacturing
processes in industry. These applications
boundary layer along material handling conveyers, the
aerodynamics extrusion of plastic sheets, blood flow

have
include

problems, the cooling of an mnfinite metallic plate in a
cooling bath and textile and paper industries.

The classical two dimensional stagnation pomt flow
on a flat plate was first studied by Hiemenz [1]. The
numerical study of laminar steady two dimensional flow
over a semi infinite permeable flat surface with mass and
heat transfer at the wall was considered by Chamlha and
Issa [2]. The governing equations of motion were reduced
into ordinary ones using a similarity transformation. An
implicit tridiagonal finite difference scheme was used to
solve the reduced self similar equations. Mahapatra and
Gupta [3] investigated numerically the steady two
dimensional stagnation pomt flow of an electrically
conducting power law fluid over a stretched surface.

Roslinda ef al [4] presented the numerical study of
unsteady boundary layer flow of an incompressible
viscous fluid m the stagnation pomt region over a
stretching sheet. Keller box method was used to solve the
boundary layer equations. The problem of steady two
dimensional laminar MHD mixed convection stagnation
point flow with mass transfer over a heated permeable
surface was examined by Abdelkhalek [5]. Coupled non
linear partial differential equations were solved by using
perturbation techmque. A numerical study of two
dimensional boundary layer stagnation pomt flow over a
stretching sheet in case of injection/ suction through
porous medium with heat transfer was considered by
Layek et al. [6]. Anuar et al. [7] considered the numerical
study of steady stagnation point flow on a vertical
surface through a porous medium. The governing partial
differential equations were first reduced to ordinary
differential equations using similarity transformation and
the resulting equations were then solved using Keller box
method. The numerical solution of MHD steady laminar
two dimensional

stagnation flow of a wviscous
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incompressible electrically conducting fluid of variable
thermal conductivity over a stretching sheet was obtained
by Sharma and Singh [8]. The governing equations of
motion were reduced into ordinary differential equations
using similarity transformation. The reduced ordinary
differential equations were then solved using shooting
method. Stagnation point flow with convective heat
transfer towards a shrinking sheet was investigated by
Wang [9]. Mahapatra et al. [10] investigated numerically
the steady two dimensional stagnation point flow of an
electrically conducting power law fluid over a stretched
surface in the presence of a magnetic field. Two
dimensional stagnation point flow in a porous medium
was studied by Kumaran et al. [11]. Perturbation
technique was used to obtain series solution of governing
equations. Kumaran et al. [12] studied the problem of
MHD boundary layer flow of an electrically conducting
fluid over a stretching and permeable sheet with injection/
suction through the sheet. The problem of similarity
solutions of the effect of variable viscosity on unsteady
mixed convection boundary layer flow over a vertical
surface embedded in a porous medium was discussed by
Hamad and Muatazz [13] by using HAMAD formulations.
Hayat et al. [14] considered the MHD stagnation point
flow and heat transfer through a porous space bounded
by a permeable surface. The governing partial differential
equations were first reduced to ordinary differential
equations using similarity transformation and the
resulting equations were then solved using HAM. The
numerical study of steady two dimensional laminar forced
MHD Hiemenz flow over a flat plate in a porous medium
was solved by Kechil and Hashim [15] using implicit
scheme method. Two dimensional magnetohydrodynamic
oscillatory flow along a uniformly moving infinite vertical
porous plate bounded by porous medium was studied by
Ahmad and Ahmad [16]. Kuo [17] investigated the
problem of thermal boundary layer in a semi-infinite flat
plate using differential transformation method. The effect
of radiation on the flow and heat transfer over a wedge
with variable viscosity was presented numerically by
Elbashbeshy et al. [18]. The effect of thermal radiation on
the natural convection flow along a uniformly heated
vertical porous plate with variable viscosity and uniform
suction velocity was studied numerically by Hossain
et al. [19]. The effects of thermal radiation on the laminar
boundary layer about a flat-plate were discussed by
Bataller [20] and presented the effects of Prandtl number
and radiation parameter. Bhuvaneswari ef al. [21] studied
the problem of convection and mass transfer of a viscous
electrically conducting incompressible fluid over a semi

Fig. 1: A sketch of the physical problem

infinite inclined plane in a porous medium with radiations
and heat generation.

The aim of the present study is to investigate
radiation effects on MHD two dimensional stagnation
point flow of a steady viscous incompressible electrically
conducting fluid towards a shrinking sheet in the
presence of a transverse magnetic field.

Problem Formulation: Consider two dimensional MHD
stagnation point flow of an electrically conducting fluid
impinging normally on a heated shrinking sheet as shown
in Figure (1). The flow is assumed to be laminar, steady,
viscous and incompressible. We assume that the uniform
stationary magnetic field of strength B, is perpendicular
to the velocity field ¥ . The magnetic Reynolds number is
assumed to be small Shercliff [22] so that the induced
magnetic field can be neglected as compared to the
imposed field. We assume that there is no applied
polarization voltage, so the electric field is zero. Further
we assume that the Boussinesq and boundary layer
approximations are valid. The equations of motion for two
dimensional steady viscous incompressible boundary
layer flow of an electrically conducting fluid, can be
written as

o

ox oy (1

2
PR WL
p Ox

2
+ 9B,
ox oy

pay> P 2

Here p is the density of the fluid, p is the pressure, o, is
the electric conductivity of the fluid and U is the free
stream velocity of the fluid.

The equation for temperature distribution for the
present boundary value problem, neglecting the viscous
dissipation, can be written as
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Where T 18 the temperature, K, 1s the constant thermal
conductivity, ¢, is the specific heat capacity at constant
pressure of the fluid and g, 1s the radiative heat flux.
Using the Rosseland approximation for radiation
Raptis ef al [23], the radiative heat flux is simplified as

__doort
" ey “

Where k£ and o are the Stefan—Boltzmamn constant and
the mean absorption coefficient, respectively. We assume
that the temperature differences within the flow such as
that the term 7° may be expressed as a linear function of
temperature. Hence, expanding T* in a Taylor series about
7™ and neglecting higher-order terms we get

Th=ard r-3rt, &)

In view of Equations (4 ) and (5), Equation (3) reduces
to

+
pe,  3pcyk

&7 (6)

From the above equation it is seen that the effect of

or or ky
v =
x Oy

16673, }621"

radiation 18 to enhance the thermal conductivity. If we

ki
take A= 0
467

as the radiation parameter, Equation (6)

becomes.
ar AT oy 8
H—FV—=—— )
&y kg (
Where ,__3M |
3N +4
The boundary conditions for the velocity and

temperature fields for the problem under consideration
can be written as.

#(x,0)=bx,v(x,0) = O,u(x,00)=U = ax,
T(x,0)= Ty, T (x,00) =T, (8)

Here & > 0 is the shrinking rate, T} is the heated surface
temperature and 7T, 1s the temperature of the fluid outside
the boundary layer (7; > 7.). In order to obtain the
velocity and temperature fields for our problem, we have
to solve Equations (1) and (2) and Equation (7) subject to
the appropriate boundary conditions given in Equation
(8). For this we use following similarity transformations.

2
a a
n= \/gy, plx,0) = py —pT(x2 +35),

u(.y) = axf (M) v(x.y)= a0 £(n), ®)
T T,
9(”)‘—%4@'

Where 1n 1s sunilanty parameter, 7, 13 the stagnation
pressure, a 1s the strength of stagnation point having

dimension of 1.
t

Using Equation (9) in Equation (1), we note that
equation of continuity (1) 1s identically satisfied and
therefore the velocity field represents the possible fluid
motion. Using Equation (9) in Equation (2) and after a little
simplification, we get.

Again using Equation (9) in Equation (7) we get,

0"+ Prkf 0" = 0. (1)

e GoBg”  and pr2 2% are Hartmann number
pa X

Here

{or magnetic parameter) and Prandtl number respectively.

Where ,_ 3
3NF +4

and Nr is radiation parameter.

Boundary conditions given in Equation (8) in view of
Equation (9) can be written as.

f0)=0,f0)=b/a=B,f(x)=1,
0(0)=1,0(c)=0. (12)

NUMERICAL SOLUTION

The governing equations (10) and (11) are lughly non
lnear. Most of the physical systems are inherently non
linear in nature and are of great interest to physicists,
engineers and mathematicians. Problems involving non
linear ordinary differential equations are difficult to solve
and give rise to interesting phenomina such as chaos. We
use a finite difference based numerical algorithm to solve
present boundary value problem comprising the coupled
non linear differential Equations (10) and (11) and
boundary conditions (12). Following Chamkha and Issa
[2] and Ashraf et al. [24-26], we reduce the order of the
Equation (10) by one with the help of substitution ¢ =/
such that Equation (10) and the boundary conditions
given in Equation (12) becomes as follows.
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_ a4
s (13)
g M- il=g" fy (14)
J(0)=0,¢{0)= B,q(e0) = 1,8{0) =1,
O(c0) = 0. (15)

We have to solve the Equations (11), (13) and (14)
subject to the boundary conditions (15). For numerical
solution of the present problem we first discretize the
domain (0, =) unifermly with step 4 Equation (13) is
integrated using Simpson’s rule Gerald [27] with the
formula given m Milne [28]. Equations (11) and (14) are
discretized at a typical grid point i = 73, of the mterval
(0, =) by employing central difference approximations for
the derivatives and then are solved iteratively by
Successive over relaxation (SOR) method Hildebrand [29],
subject to the appropriate boundary conditions given in
Equation (15). In order to accelerate the iterative
procedure, to improve the accuracy of the solution and to
have an estimate of local as well as global discretization
errors, we use the solution procedure which is mainly
based on algorithm described by Syed et al. [30]. The
iterative process is stopped if the following criterion is
satisfied for the three consecutive iterations.

Max (g% =gl
H Hk+1)_6(k)“2=) = TOL itar (1 6)

Here TOL,,, is the prescribed error tolerance and we have
taken at least 107"° for our calculations during the
execution of a computer program.

The higher order accuracy of the approximations to
the exact solutions can be obtained by the use of
Richardson’s extrapolation. This process can be carried
out using any extrapolation scheme Deuflhaard [31].

RESULTS AND DISCUSSION

This section 1s devoted for the presentation of our
findings in tabular and graphical form. In order to develop
a better understanding of the physics of the problem, we
choose to present the effects of shear stresses, the
shrinking parameter, the magnetic parameter, the radiation
parameter and the Prandtl number on the flow and heat
transfer characteristics. For the stability of our numerical

Table 1: Dimensionless temperature profiles 8(r) on the three grid levels
and extrapolated values for B=0.5,A4= 1.0, Nr = 3.0, Pr=10.7

and 1. = 6.
1)
n h 3 h Extrapolated values
2 4
0 1 1 1 1
0.6 0.772112 0.771656 0.771313 0771177
1.2 0.5346686 0.545984 0.545386 0.54515
1.8 0.346008 0.345302 0.344627 0.344359
24 0.192431 0.1918% 0.191319 0.191087
3 0.092947 0.092629 0.092239 0.092081
30 0.038632 0.038483 0.038272 0.038186
4.2 0.0130665 0.013612 0.013519 0.013481
4.8 0.004006 0.003992 0.00396 0.003947
5.4 0.000861 0.000859 0.000852 0.000849
4] 0 0 0 0

Table 2: Comparison of the present results with the literature results given
by Lok [32] and Wang [9] with AL = 0, Nr =0, Pr=10.7

& 1. =5
J10)
B Present Wang [9] Lok [32]
0.20 1.05112 1.05113 1.05129
0.50 0.71328 0.71330 0.71334

Table 3: Shear stresses and heat transfer rate for AMf=1, AF =3.0, Pr=10.7
and r.. =6 with various values of 5.

B SO 20

0.25 1.877455 0.412803
0.50 2.120114 0.378822
0.75 2.307090 0.342202
1.0 2.429972 0.302334
1.25 2.476343 0.258227
1.50 2.425917 0.208447
1.75 2.239347 0.149512
2.0 1.805761 0.076282

scheme and to improve the order of accuracy of the
solutions, numerical results are computed for three grid
sizes and then are extrapolated using Richardson’s
extrapolation. It 1s inportant to note that the for numerical
solutions, the wvalue of 7. depends
dimensional parameters which govern the problem. We

on the non

have adjusted 7. in order to have asymptotic behavior of

velocity and temperature profiles. A comparison of

numerical values of temperature velocity (1) for the three

grid sizes , 2 g% and their extrapolated values is shown
24

in Table (1). Excellent comparisons validate our numerical
computations. Table (2) 1s another source of validity of
the present results in which our results compare well with
the literature results of Lok [32] and Wang [9]. Table (3)
gives values of shear stress f(0) and heat transfer
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3.0

s

Fig. 2: Normal velocity profiles for M = 1, Nr
Pr=0.7 and n_with various values of B.

1.5

1

Fig. 3: Horizontal velocity profiles forAf = 1, Nr = 3.0,
Pr = 0.7 and Pr=0.7 and 1. with various values
of B.

rate —070) at the sheet for various values of shrinking
parameter B in the presence of weak transverse magnetic
field (Af = 1), the shear stress increases for 0.25 <—B<1 .25
However, a reverse trend can be seen for 1.25 <-B<2.0.
This non monotome behavior of shear stress aganst the
shrinking parameter has also been reported by Wang [9]
1n the absence of magnetic filed. Physically this behaviour
may be attributed to the fact that vertical growth rate of
horizontal flow reversal region and hence of boundary
layer thickness 1s not uniform with increase in B as may be
seen in the horizontal velocity profiles sketched in
Figure (3). As the horizontal flow reversal causes vertical
flow reversal in the vicinity of the stagnation point, for
larger values of B extents of vertical flow regime increase
as shown in Figure (2) and complex interaction of vertical
flow reversal and impinging flow causes the boundary
layer thickness grow rapidly, thus reducing the shear

Table 4: Shear stresses and heat transfer rate for B =0.5, Nvr = 3.0, Pr =
0.7 and . = 5 with various values of AL

M S0 A,

0.0 1.495722 0.346172
0.5 1.674222 0.356736
1.0 2.120137 0.379832
1.5 2.703497 0.405899
2.0 3.353283 0.432773
2.5 4.037486 0.460611
3.0 4.741092 0.489584

Nr = 30
Pr = 0.7 and n._ with various values of B.

Fig. 4. Temperature profiles for M = 1

2

stress at the shrinking surface. The heat loss per unit area
from the sheet decreases by increasing the magnitude of
shrinking parameter B which 1s the consequence of
horizontal flow reversal resulting into reduced convection
rate.

Table (4) predicts the influence of applied magnetic
field on the shear stress and heat transfer rate. The shear
stress and heat transfer rate from the surface increase with
an increase in the magnetic parameter A{. This is because
the transverse magnetic field assists the impinging flow
and reduces horizontal and vertical flow reversal as may
be seen m the normal and horizontal velocity profiles
shown in Figures (5) and (6).

The effect of the radiation parameter Nr on heat
transfer —040) 1s given in Table (5). The heat transfer from
the heated sheet to the fluid increases as Nr is increased.
However, the effect of Nr 13 less significant for its larger
values. This is natural as the heat loss at the heated
surface 13 now determined by two modes of heat
transfer the conduction and the radiation. Increasing the
values of radiation parameter thus enhances the heat
transfer rate. From Table (6) it is noted that the loss of
heat transfer increases for all values of the Prandt] number
Pr i the given range. Figures (2), (3) and (4) illustrate the
effect of the shrinking parameter B on the velocity and
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f(n)

Fig. 5: Normal velocity profiles for B = 0.5, Nr = 3.0,
Pr = 0.7 and n_=5 with various values of A/,

Fig. 6 Horizontal velocity profiles for B= 0.5, Nr = 3.0,
Pr = 0.7 and n.=5 with various values of M.

Table 5: Heat transfer rate for B =-0.5, Af=1.0, Pr=0.7 and 1. = 6 with

various values of Nr

Nr —810)

0.7 0.305083
2.0 0.361612
4.0 0.388843
6.0 0.400024
8.0 0.406115
10.0 0.409946
100.0 0.424983
200.0 0.425881
300.0 0.426182
400.0 0.426333
500.0 0.426423
600.0 0.426484
700.0 0.426527
800.0 0.426559
900.0 0.426584
1000.0 0.426605

Table 6: Heat transfer rate for B =-0.5, A/=1.0, Nr =3.0 and .. = 6 with

various values of Pr

Pr —3(0)

0.1 0.236814
02 0.266021
0.3 0.292959
0.4 0.317579
0.5 0.339977
0.6 0.360324
0.7 0.378822
0.8 0.395683
0.9 0411109
1.0 0425282

temperature fields. It can be noted from Figure (2) that
normal velocity profiles fin) decrease with the increase in
magnitude of B. Figure (3) plots the horizontal velocity
F(m for different values of B. The honzontal velocity
profiles decrease as the magnitude of shrinking rate
increases. The temperature at a pomnt rises with an
increase in the shrinking rate as shown in Figure (4). The
velocity and thermal boundary layers become thicker by
increasing the magnitude of the shrinking parameter as
shown in Figures (3) and (4). This trend of velocity and
temperature profiles 1s obviously due to the horizontal
and vertical flow reversal caused by the shrinking of the
sheet which increase with increasing the shrinking rate.
This flow reversal hinders heat, mass and momentum
transfer from sheet to fluid as also reported by Wang [9].

The mfluence of imposition of the magnetic field on
the velocity and temperature fields is predicted in Figures
(5), (6) and (7). The normal and horizontal velocity profiles
rise as the magnetic parameter A/ increases. As noted
earlier, the magnetic field assists the impinging flow and,
therefore, reduces the extents of horizontal and vertical
flow reversal regimes and causes the hydrodynamic and
thermal boundary layers tlickness to decrease and
become thinner. In this way transverse magnetic field can
effectively be used to counteract the effects of shrinking
with its strength adjusted according to the rate at which
the sheet shrinks.

Figure (B) predicts the influence of the radiation
parameter Ny on the temperature field. The temperature
profiles fall as N is increased. Further the thinming of the
thermal boundary layer occurs by increasing the values of
Nr as shown in Figure (8). This 1s due to the high
convection rate enriched by taking inte account the
radiative heat flux. These results dictate that radiative
mode of heat transfer can be employed to enhance the
surface heat loss.
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0 05 1 15 2 25 3 35 4 45 5
n

Fig. 7. Temperature profiles for B 05 Nr = 30,
Pr = 0.7 and 5= 5 with various values of M.

1.2
Nr=07
1 ———Nr=20
------ Nr=4.0
0.8 — —Nr=60
' —--—Nr=80
—~ —=—Nr=100
Fos —+—Nr=100.0
[an]
0.4
02
0

0 06 12 18 24 3 36 42 48 54 6
n
Fig. 8: Temperature profiles for B = 05, Nr = 3.0,
Pr = 0.7 and 1= 5 with various values of Nr.
1.2

0 06 12

18 24 3
n

Fig. 9 Temperature profiles for B = 0.5, Nr = 3.0,

36 42 48 54 6

Pr = 07 and .= 5 with various values of Pr.

Finally, Figure (9) displays the influence of the
Prandtl number £ on the fluid temperature. It can be
concluded that the temperature at a point decreases with
an increase i Pr. The thermal boundary layer thickness
decreases by increasing values of Fr.

CONCLUSIONS

This study considered the effects of shrinking
parameter, magnetic parameter, radiation parameter and
Prandtl number on two dimensional laminar steady
viscous incompressible stagnation point flow and heat
transfer of an electrically conducting fluid towards a
heated shrinking sheet. The transformed self similar
equations with associated boundary conditions were
solved numerically by an algorithm based on fimte
differences. The following conclusions can be made.

» A region of reverse flow occurs near the surface of
the sheet due to the shrinking rate and can be
stopped by applying a strong magnetic field.

¢+ The velocity and thermal boundary layers become
thicker with an increase in the values of shrinking
parameter and become thinner by increasing the
magnetic field.

»  The heat loss per unit area from the sheet decreases
with an increase in the magnitude of shrinking
parameter.

»  The presence of the thermal radiation term in the
energy  equation
distribution.

¢ The thermal boundary layer decreases by increasing
the value of radiation parameter.

reduces the temperature
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