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Improved Performance of LFSR’s System with Discrete Chaotic Iterations
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Abstract: Linear Feedback Shift Registers (LFSRs) are considered powerful methods for generating
pseudo-random bits m cryptography algorithm applications. In this paper it 1s shown that the linear
dependencies in the generated random bit sequences can be controlled by adding a chaotic logistic map to the
LFSR’s systems. The structure of the LFSR’s output sequence in combination with a chaotic map is analyzed
and proved to have at least as much uniformity than the corresponding set for the linear components
individually. Tn order to understand that using the proposed PRBG is reliable in secure algorithms, the NIST
suite test have been taken on the proposed method, finally to compare the proposed PRNG output sequence
features with the two types of LFSRs (Fibonacci and Galois).
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INTRODUCTION

In the modern world of computers, network security
is the main concern which relies on the use of
cryptography algorithms. high quality random number
generation is a basic subject of cryptography algorithms
and the importance of a secure random munber generator
design
generation techmques about RNGs involve truly random
and pseudorandom number generators. For a brief
mtroduction n various types of RNGs:

Truly Random Number Generators (RINGs) 1s a
computer algorithm, which generates a sequence of
statistically independent random numbers. Actually these
generators require a naturally occurring source of

cannot be underestimated. Most common

randomness phenomena (ie. as a non-deterministic
design a
hardware device or a software program based on RNGs

system). Most practical implementations

to produce a bit sequence which is statistically
mdependent [1].

Pseudo-Random Bit Generators (PRBGs) are
imnplemented by an algorithm that 13 actually a finite
state machine; reliable RNGs which are implemented by
these methods should pass several statistical tests to
prove their usefulness [2-4].

With the mention of these points, the security of the
entire cryptographic system such as RSA and DES and
the other secure algorithms relies on the randomness
quality of the generator [5, 6]. PRNGs are based on the
algorithmic function, so the outputs of these methods are
not truly random.

In the last two decades several works in this area
have been implemented based on chaotic systems [7].

Chaotic system is a natural phenomenon that
behaves chaotic in the specific system’s parameters [8].
Chactic maps are sensitive to initial conditions; this
makes them sensitive to minimal change of information
from the mput thus heavily varying the output when mput
sequence changes by the minute. Chaotic maps compute
quickly in the regular machine and are able to create
sequences with extremely long cycle lengths [9].

Linear feedback shift register (LFSR) 15 a shft
register which 1s able to generate random bits (with the
mention of amount of registers [10]). In the LFSR input bit
1s a linear function (i.e. it’s an exclusive-or function) of its
previous state. It’s a shift register which nput bit is
driven by the exclusive-or (XOR) of some bits of the
overall shift register value.

The initial value of the LFSR is called the seed,
LFSR’s operation 158 determimstic and so the stream of
values produced by the register is completely determined
by its algorithm and current (or previous) state.

The theory of the Linear Feedback Shift Registers
(LF3Rs) 1s based on the polynomial form, so in the blow
equation p and g are the biary digits:

generatorLFSR) =X =X"+1 (1

In this paper we design a new random number
generator by wsing a LFSR generator with a combination
of logistic chaotic maps. [10]. The proposed random bit
generator 18 based on a combination of logistic chaotic
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Fig. 1: Three-Bit Shift Register [28]
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Fig. 2: Liner Feedback Shift Register [28]

maps as a chaotic system in the LFSR algorithm, which of
course increases the complexity in output sequence of the
LFSR and becomes difficult for an intruder to extract
information about the cryptography system. In the next
section, we briefly introduce the LFSR algorithm, which is
a basic building block of the proposed pseudo random bit
generator.

Linear Feedback Shift Register: The LFSR is a shift
register that when the signal generator is clocked, each
register generates a signal based on the previous registers
(see Figure 1). In this system some of the outputs are
combined in an exclusive-or arrangement of elements to
form a feedback mechanism. A LFSR can be designed by
performing a XOR’s function on the output of the
registers. Figure 2 shows a LFSR based on three D-flip
flops which are clocked synchronically.

Based on these theoretical points, the condition of
the best performance in the LFSRs occurs when the
outputs of the D-flip flops are loaded with a random seed
value so the linear feedback shift registers make very
good pseudorandom bit generators, it will be able to
generate pseudorandom bit sequence of 1s and 0s.

The LFSR generators are defined by the mathematical
model:

x,=(ax,, +..tax,,) mod 2 2)
w

Uy = me'ﬂ'—] 27 3)
i=1

For an example of positive integer’s s and w, See
Refs. [11-13] for more details. The result is that the
maximal period length in the specific LFSR’s system with
the » registers is p=2"-1. The longest period in the same

an al az aiz

Fig. 3: Galois LFSR setup

LFSR’s systems should be found an »n as exponent
primitive polynomial.

In the security field, the period length is very
important because it makes the sequence unpredictable.
However, the basic solution for this problem is to produce
an n exponent primitive polynomial (i.e. n is the large
number and reliable sequence length in secure algorithm)
with the increased number of D-flip flops. This idea may
not work very well, because the number of the registers is
limited.

The LFSRs are split into two family devices called the
Fibonacci and the Galois representations. In the two next
subsections we introduce the Fibonacci LFSR and the
Galois LFSR [12-15].

Galois LFSRs: The Galois is presented in the blow
equations:

a=a, X'+.+ax"+a, “)
So the value of g, | results:
(a-a, ¥ '..—ax'-a)/X ' = a,, %)

And the product xa is given that simply have been
resulted by multiplication of x in the equation (5):

xa =a, X+ a, X+ Fax’ + ax ©6)

Thus as x is the root of the last equation, we obtain:
xa = (a8, + a W tay @)
The above equation is the main description of the
Galois device feedback computation. In Figure 3, a Galois

device is represented as:

PX)=X'"+X+1 ®)
Fibonacci LFSRs: The Fibonacci implementation is the
simple shift register which is given by the Fibonacci

representation. Let the value of a expressed in the
following equation:
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a=0ag_ Vg1 -+ a1y +3ap) ©)

With the mention of the transposed function the
value of @ would be:
a;=Tr(ax’)  j=0l..k-1 (10)
So the value of the xa is obtained in the fallowing
equation by the replace of a as xa function which are
given by:
(xa)f/ = Tr(ax’*h) an

Finally:
(xa);=dyy  j=0l.k—2
C , (12)

. k .
(xa),_ =Tr(ax" )= s, _1a4_1 +...+ aq

The two last equations are the best descriptions of
the main part of a Fibonacci LFSR’s systems. In Figure 4,
it’s represented as:

PX)=X'+X+1 (13)

The properties of LFSR have been deeply studied in
Ref. [16-18]. In this paper we will improve the period
lengths in these LFSRs generators by adding a chaotic
system in a part of the LFSR’s algorithm and create a
novel Chaotic Linear Feedback Shift Register (CLFSR).

In the next section we are going to describe the
importance of chaotic maps in cryptography function.

Chaotic Logistic Map: The concept of the chaotic
behaviors is related to the positive value of
Lyapunov exponents. It is described by following
assumptions:

Let s € S and v be an independent element of tangent
space at s and the value of DF"(s)(v) mentioned of the n-
iteration of F at s in the direction of v. So the Lyapunov
exponent is given by the specific limited in the equation
14:

Aoy = lim ~in|DF"(5)0) (]4)

The dynamic system presented by F when F=S-S
where S'is the state space, sothe dynamic system has

the chaotic behavior if only the value of the Lyapunov
exponent in the specific system parameter is positive
[16-19].

These chaotic behavior shown by the simple
mathematical model which is used to describe the growth
of biological populations are used in the initial population
of GA.

The mathematical form of the chaotic logistic map is
given as:

fx,) =x,,, =rx,(1-=x,) (15)

Where x, is the state variable, which lies in the interval
[0..1] and r is called system parameter which can have any
value between [1..4].

In the next section a novel combination of the LFSR’s
system will be described and the chaotic map will be
proved by the following presented theorem.

Combining LFSR with Chaotic Map: Now let us express
t, as a LFSR, ¢, as a chaotic logistic map and the output
function as:

ti:tl.l GBZL2,t (]6)

The sign of @ represents the operator XOR on the
binary sequence of ¢, and ¢, The bit sequence of
selection (i.e. the B set with &’ bit size), so observed in the
expansion of ¢, the string of bit formed by concatenating
the bits b,,,b,,....b e the string of bits &11.62....b15,, in

the expansion of #, and by this order in the (i-1)" level (i.e.
in the expansion of ¢,) the string of bits
bi_1,1.bi-1,2.-bi-1,5,, Where:

noay
SO +...+S]-_] :Zj=]ki_] (]7)

It is assumed that % is the size of B, (i" bit selection).
Defining P, as an independent parameter of the j” set, the
value of 0, is the corresponding sets of bit strings, it
means that the value of the 0, is the corresponding sets
of bit string for P.

By mentioning these assumption the random bit
generator is B-equidistributed if 6, is equidistributed
[20-23].

For non-liner generators, the uniformity of ¢ is
often evaluated by discrepancy bounds [24], it’s an
average over an entire family of generators. Certain types
of non-linear generators (like chaotic maps) tend to
perform better than the linear ones in statistical tests [25].
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Fig. 5: Chaotic system combined with a LFSR system

Figure 5 shows how a LFSR (M-box) combines with a
chaotic system (N-box). So with this complete definition,
we now have a theorem:

Theorem 1: [f B is the bit selection of a sequence
generated by t, (output of a LFSR exclusive-or chaotic
map) and P, is a B-equidistribution for B of size k', then
0, ;@ w is equidistributed (where w is a bit vector of
sizek') for any w and P is also B-equidistributed.

Proof: The fundamental aspect for proving this theorem
is based on the reason that in the sample sequence if x =
x'thenx ® w=x'® wand ifx ® w=x' ® w then x=x'(i.ex ®
w=x'® w if only if x=x"). On the other hand, it is clear that:

= , it means that the distribution of
0,300 UXEBLB (x® w)

the output sequence that is generated by LFSR XOR
chaotic logistic map is equal to union of LFSR’s
distribution and chaotic logistic map’s distribution).

Table 1: NIST test results
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Fig. 6: NIST test result (Red is the Proposed PRNG, Blue
represents Galois and Green is Fibonacci)

It is equidistributed if and only if 0,, is
equidistributed. With the mentioning of these facts the
unions of equidistributed sets generate equidistributed
set, S0 gy =U 01,5 ®w) 1S equidistributed.

web,

Statistical Testing: The new method for generating
secure random numbers is evaluated by the NIST test
suite which is a theoretical analysis and experiment
program.

NIST Statistical Test Suite: The NIST tests suite is a
statistical package involving 15 tests which are based on

P-value Pass rate
Tests proposed PRNG Fibonacci Galois proposed PRNG Fibonacci Galois
Frequency 0.606499 0.535558 0.269087 0.9930 0.9900 0.9867
Block-Frequency 0.483676 0.256881 0.390767 0.9925 0.9785 0.9550
CuSums-forward 0.553505 0.125567 0.389001 0.9985 0.9815 0.9900
CuSums-backward 0.769260 0.558502 0.568710 0.9900 0.9805 0.9900
Rans 0.425020 0.578382 0.369001 0.9915 0.9910 0.9810
Long run 0.174249 0.012343 0.155672 0.9910 0.9895 0.9915
Rank 0.967341 0.859903 0.790510 0.9915 0.9825 0.9815
FFT 0.000159 0.000159 0.000159 0.9950 0.9950 0.9860
Overlapping templates 0.977566 0.379555 0.977301 0.9895 0.9805 0.9800

Number of binary sequences tested (m) = 2000

Length of each binary sequences = 1000000

Significant level (« ) =0.01

The range of acceptable proportion is [0.9833245, 0,9966745]
Null hypothesis (H,): The binary sequence is random.

If p-value > « (0.01) then the null hypothesis is accepted.

If p-value < « (0.01) then the null hypothesis is rejected.

If p-valuer > 0.0001 then the p-values can be considered to be uniformly distributed
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hypothesis testing. Also The NIST tests suite focuses on
a variety of different types of non-randomness. These
tests focus on a variety of different types of non-
randomness that could occur in the sequence [28].

Experiment Resulis: [n our test, #zis thesamplesizeand £ =1- o
mn which s = 2000 and 7 = 1- 0.01 = 0.99 for the present
analysis. So the range of an acceptable proportion is
[0.9833245, 0.9966745]. The quantitative results of the
proportions are given in Table 1 for various statistical
tests of the NIST suite.

Accepted p-value in the NIST suite test with the
mentioned mitial values, should be in interval [0.9833245,
0.9966745]; so the p-values of our purposed method 1s in
this interval and then the 15 tests of the NIST suite have
been passed as shown InFig. 6.

CONCLUSION

In this paper we presented a novel method to
generate random bit sequence by combination of LFSR’s
system and chaotic logistic map and it has been proved in
a reliable theorem. At the end, we compared it with the
same other methods such as Fibonacci LFSR and Galois
LFSR and the result was shown in table 1.
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