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The Dominating Polynomial of LE(Q,) and GLE(Q;)
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Abstract: To determine domination number and dominating polynomial of molecular graph were always
important for mathematical-chemistry scientists, one of the most important graph in chemistry is cube graph
(Q;) and the other graphs that are made from on it. In this paper we want to compute the dominating polynomial

of LE (Qs), that is one the derivatives of (05).
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INTRODUCTION

The domination number and dominating polynomial
of molecular graph are used vastly in mathematical
chemistry, specially about the derivatives of (Q;). In order
to obtain of this polynomial we have to define some of
concepts in graph theory and for notation is not defined
here we refer the reader to [6]. A MAP that we show it as
M is a planar and bridgeless graph.

Let M be a map with n vertex, m edge and f face, we
know that:

n—m + f=2. (Euler's formula for planar graphs)

Stellation of Mor ST(M) constructed as follow:

A new vertex added inside of any face of M and
connected it with each boundary vertex of that face.
(Fig. 1).

If n,,m, f; be the number of vertices, edges and faces
of ST(M) respectively, we can see that:

m=n+f
m, =3m,
fi=2m.

Also the Dual of Mor DU(M) is:

To locate a vertex inside of any face of M and to join
two such vertex if their corresponding faces share a
common edge. (Fig. 2).

If n,,m, and f, be the number of vertices, edges and
faces of DU(M) respectively, we have:
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Finally the Leapfrog of M or LE(M) is defined as
follow: (Fig. 3).

LE(M) = DU(ST(M))
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Du (st(Q,)) =

LE(Q,)
Fig. 4:

IF ny,m, and £, be the number of vertices, edges and
faces of LE(M) respectively, we can show that:

ny = dn,
my=3m,
SLi=f*n,

in which d is the degree of vertices of M when M is
d-regular.

To Compute Coefficients of Dominating polynomial
LE(Q;): In this section we may assume that M = Q;. Then
the Fig. 4 will be DU(ST(Q5)) = LE(Q;)

Since the vertices {a,,a,,a;,a,} and {w ,w,w;,w,} are
covered by themselves or by the combination of both of
them and also the vertices {v,,v,,v;,v,} and {u,,u,,u;,u,}
are covered by themselves or by the combination of both
of them, therefore for obtaining y (the domination number)
we set:

Du(ET{M)} ¢

Du{ST(M)}

A,= the Set of k Elements of Vertices That Form the
Dominating Set: From above argument and the solving
the following system:

n
¥ = min Zx,
i=1

Subject to: (A + 1)X > 1,
x; €40, 1}, wherei=1,2,...n,
in which 4 and I adjacency and identity
matrices respectively. Here y = 8. Therefore |4, = 0 where
i=1.2,.,7.

In order to compute |4,] we consider five cases as
follow:

are

e At the first we select four elements from the set
{a,,a,,a;,a,} and four elements from the set
{w,,wy,ws,w,}, in this case all of the vertices covered
by these elements and we have:

-

¢ In the second step we select three elements from the

set {a,,a,as,a,} for example , that caused

a.ay, a3{4] covered and for covering the left corner
3

of graph by two elements we have to select w,,u, or
b,,u, or c,u, and or ¢,v, that is four cases for left
corner and for covering the three other corners we

have to select ul’uz’u3{3] , 50 in this part we have:
3
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¢ In this part we select two elements from set

{a,a,a,a,} for example al,az{ilj , therefore in order
2

to covering the right and the above corners we have
to select #, and #; also for covering the other parts of
the left and the down corners must to select w,,u,, or
Wy, Vs, OF ¢uty, and or b, u., (Fourcases), also for
down we have four cases, therefore 1n this section we

4
H x4 =96
2

¢ In the fourth step we select one element from set

have:

{a,.a,a,,a,} for example al’[ﬂ . Therefore a, and a,

covered by @, and for covering the other vertices mn
the above we have to select %, and for covering the
left and right corners by the same argument in (IT),
(TTT) we have 4 = 4 cases and for covering the rest
vertices the down corner we have two cases i.e. v, #,
So in this part the number of cases is:

4
[Jx 4 4% 2=128

*  Fmally, we select four elements from (), W3’W4}{4J
4

and for covering the other vertices at the four corners

we have to select v, or MI[Z}VZ Or 4y {2}\;3 or M3{2J
1 1 1

and v, or ,, [ZJ So we have:
1

4
[4Jx 2x2x2x2=16

Since there exist a symmetry between {a,.a,.a,.a,}
and {v,v,v,.v,}, therefore the above argument will be
satisfy if we substitute {a,a,.a,.a,} by {v,v.v,v}, On
the other hand selection of 4 elements from {a,a;a5.a.}
is equivalence to selection of 4 elements from
fwwowaw,} and is equivalence to the selection 0
element from the set {v, v, v,v,} therefore one case is

repeated that must be subtracted from (I) also bellow

cases must be subtracted from |4y, n step (11)[4] , I step
1

aH)[‘;J , instep (W)[:J and finally in step (V)G] . Must be

subtracted. Therefore:
|4 =2(1+ 16+ 96+ 128 + 16) - 2' =514 - 16 = 498

Since every set for covering with cardinality 9 must
be contaimns the 8 above element belong to dominating set,
then we must select the one element from 24 — 8 = 16

remind element [IGJ Hence:
1

16
| = [ . JA8| =16 498 = 7968
With the same manner we have:

i

L4 _{ 16 jA‘g' where i =10,11,...20
-8

If we select any 21 vertices of 24 vertices, then all of
vertices covered by this 21 elements. So:

24
A“'_[zJ

4= [24} where i = 22,2324
i

and

Fmally, the dominating polynomial of LE(Q,) 1s as follow:

316 A o0y
Dix)= E [z_gjplsx“r E (i}g in which |4, = 498
i=8

i=21

The other graph that we have computed its
dominating polynomial is GLE((;) that it is generalize of
the molecular graph of LE(Q;) that shown in Fig. 5.

With the same argument i above we have:

18 M oy 8 e
Dix)= Z|Al-‘xl = 2{16_1_]A15|xi + Z{ z' }x’ mwhich

i=16 i=16 i=43
4, = 147650
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Fig. 5:
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