The Dominating Polynomial of $LE(Q_3)$ and $GLE(Q_3)$

M. Alaeiyan, S. Mohammadian and H. rastegari

Department of Mathematics Iran University of Science and Technology, Narmak, Tehran 16844, Iran

Abstract: To determine domination number and dominating polynomial of molecular graph were always important for mathematical-chemistry scientists, one of the most important graph in chemistry is cube graph (Q_3) and the other graphs that are made from on it. In this paper we want to compute the dominating polynomial of LE (Q_3) , that is one the derivatives of (Q_3) .

Key words: Cube graph · Stellation · Dual · Map · Domination number · Dominating polynomial **AMS Subject Classifications:** 05C31

INTRODUCTION

The domination number and dominating polynomial of molecular graph are used vastly in mathematical chemistry, specially about the derivatives of (Q_3) . In order to obtain of this polynomial we have to define some of concepts in graph theory and for notation is not defined here we refer the reader to [6]. A MAP that we show it as M is a planar and bridgeless graph.

Let M be a map with n vertex, m edge and f face, we know that:

$$n-m+f=2$$
. (Euler's formula for planar graphs)

Stellation of Mor ST(M) constructed as follow:

A new vertex added inside of any face of M and connected it with each boundary vertex of that face. (Fig. 1).

If n_1, m_1, f_1 be the number of vertices, edges and faces of ST(M) respectively, we can see that:

$$n_1 = n + f$$

$$m_1 = 3m,$$

$$f_1 = 2m.$$

Also the Dual of Mor DU(M) is:

To locate a vertex inside of any face of *M* and to join two such vertex if their corresponding faces share a common edge. (Fig. 2).

If n_2, m_2 and f_2 be the number of vertices, edges and faces of DU(M) respectively, we have:

Fig. 1:

M Du(M)

Fig. 2:

$$n_2 = f,$$

$$m_2 = m,$$

$$f_2 = n,$$

Finally the *Leapfrog* of M or LE(M) is defined as follow: (Fig. 3).

$$LE(M) = DU(ST(M))$$

Fig. 3:

 $\mathtt{Du} \ (\mathtt{st}(\mathtt{Q}_3)) \ = \ \mathtt{LE}(\mathtt{Q}_3)$

Fig. 4:

IF n_3 , m_3 and f_2 be the number of vertices, edges and faces of LE(M) respectively, we can show that:

$$n_3 = dn,$$

$$m_3 = 3m,$$

$$f_3 = f + n,$$

in which d is the degree of vertices of M when M is d-regular.

To Compute Coefficients of Dominating polynomial $LE(Q_3)$: In this section we may assume that $M = Q_3$. Then the Fig. 4 will be $DU(ST(Q_3)) = LE(Q_3)$

Since the vertices $\{a_1, a_2, a_3, a_4\}$ and $\{w_1, w_2, w_3, w_4\}$ are covered by themselves or by the combination of both of them and also the vertices $\{v_1, v_2, v_3, v_4\}$ and $\{u_1, u_2, u_3, u_4\}$ are covered by themselves or by the combination of both of them, therefore for obtaining γ (the domination number) we set:

 A_k = the Set of k Elements of Vertices That Form the **Dominating Set:** From above argument and the solving the following system:

$$\gamma = \min \sum_{i=1}^{n} x_i$$

Subject to: $(A + 1)X \ge 1$, $x_i \in \{0, 1\}$, where i = 1, 2, ..., n,

in which A and I are adjacency and identity matrices respectively. Here $\gamma = 8$. Therefore $|A_i| = 0$ where i = 1, 2, ..., 7.

In order to compute $|A_8|$ we consider five cases as follow:

• At the first we select four elements from the set $\{a_1,a_2,a_3,a_4\}$ and four elements from the set $\{w_1,w_2,w_3,w_4\}$, in this case all of the vertices covered by these elements and we have:

$$\binom{4}{4}\binom{4}{4} = 1$$

• In the second step we select three elements from the set $\{a_1,a_2,a_3,a_4\}$ for example, that caused $a_1,a_2,a_3,\begin{pmatrix}4\\3\end{pmatrix}$ covered and for covering the left corner

of graph by two elements we have to select w_4, u_4 or b_4, u_4 or c_4, u_4 and or c_4, v_4 that is four cases for left corner and for covering the three other corners we have to select $u_1, u_2, u_3, \binom{3}{3}$, so in this part we have:

$$\binom{4}{3} \binom{3}{3} \times 4 = 16$$

• In this part we select two elements from set $\{a_1, a_2, a_3, a_4\}$ for example $a_1, a_2, \binom{4}{2}$, therefore in order

to covering the right and the above corners we have to select u_1 and u_2 also for covering the other parts of the left and the down corners must to select w_4 , u_4 , or w_4 , v_4 , or c_4 , u_4 , and or b_4 , u_4 , (Fourcases), also for down we have four cases, therefore in this section we have:

$$\binom{4}{2} \times 4 \times 4 = 96$$

• In the fourth step we select one element from set $\{a_1,a_2,a_3,a_4\}$ for example $a_1, \binom{4}{1}$. Therefore a_2 and a_4

covered by a_1 and for covering the other vertices in the above we have to select u_1 and for covering the left and right corners by the same argument in (II), (III) we have 4×4 cases and for covering the rest vertices the down corner we have two cases i.e. v_3 , u_3 So in this part the number of cases is:

$$\binom{4}{1} \times 4 \times 4 \times 2 = 128$$

• Finally, we select four elements from $\{w_1, w_2, w_3, w_4\} \begin{pmatrix} 4 \\ 4 \end{pmatrix}$ and for covering the other vertices at the four corners we have to select v_1 or $u_1 \begin{pmatrix} 2 \\ 1 \end{pmatrix}, v_2$ or $u_2 \begin{pmatrix} 2 \\ 1 \end{pmatrix}, v_3$ or $u_3, \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ and v_4 or $u_4 \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ So we have:

$$\binom{4}{4} \times 2 \times 2 \times 2 \times 2 = 16$$

Since there exist a symmetry between $\{a_1,a_2,a_3,a_4\}$ and $\{v_1,v_2,v_3,v_4\}$, therefore the above argument will be satisfy if we substitute $\{a_1,a_2,a_3,a_4\}$ by $\{v_1,v_2,v_3,v_4\}$, On the other hand selection of 4 elements from $\{a_1,a_2,a_3,a_4\}$ is equivalence to selection of 4 elements from $\{w_1,w_2,w_3,w_4\}$ and is equivalence to the selection 0 element from the set $\{v_1,v_2,v_3,v_4\}$ therefore one case is repeated that must be subtracted from (I) also bellow

cases must be subtracted from $|\mathcal{A}_8|$, in step $_{\text{(II)}} \binom{4}{1}$, in step $_{\text{(IV)}} \binom{4}{3}$ and finally in step $_{\text{(V)}} \binom{4}{4}$. Must be subtracted. Therefore:

$$|A_s| = 2(1+16+96+128+16) - 2^4 = 514-16 = 498$$

Since every set for covering with cardinality 9 must be contains the 8 above element belong to dominating set, then we must select the one element from 24 - 8 = 16 remind element $\binom{16}{1}$ Hence:

$$|A_9| = {16 \choose 1} |A_8| = 16 \times 498 = 7968$$

With the same manner we have:

$$|A_i| = {16 \choose i-8} |A_8|$$
 where $i = 10,11,...,20$

If we select any 21 vertices of 24 vertices, then all of vertices covered by this 21 elements. So:

$$\left|A_{21}\right| = \begin{pmatrix} 24\\21 \end{pmatrix}$$

and

$$|A_i| = {24 \choose i}$$
 where $i = 22,23,24$

Finally, the dominating polynomial of $LE(Q_3)$ is as follow:

$$D(x) = \sum_{i=8}^{20} {16 \choose i-8} |A_8| x^i + \sum_{i=21}^{24} {24 \choose i} x^i \text{ in which } |A_8| = 498$$

The other graph that we have computed its dominating polynomial is $GLE(Q_3)$ that it is generalize of the molecular graph of $LE(Q_3)$ that shown in Fig. 5. With the same argument in above we have:

$$D(x) = \sum_{i=16}^{48} |A_i| x^i = \sum_{i=16}^{44} {32 \choose 16-i} |A_{16}| x^i + \sum_{i=45}^{48} {48 \choose i} x^i \text{ in which}$$

$$|A_{16}| = 147650$$

Fig. 5:

REFERENCES

GLE(Q3)

- 1. Alaeiyan, M. and S. Mohammadian, XXXX. Graph polynomials, submitted.
- 2. Alaeiyan, M. and J. Asadpour, XXXX. The edge szeged index and the revised szeged index of bridge graphs. World Appl. Sci. J., (To Appear).
- 3. Alikhani, S. and H. Torabi, 2010. On the domination polynomials of complete partite graphs, World Appl. Sci. J., 9(1): 23-24.

- 4. Alikhani, S., S. Akbari and Y.H. Peny, XXXX. Characterization of graphs using domination polynomial, European J. Combinatorics, (To Appear).
- Alikhani, S. and Y.H. Peny, 2009. Dominatig sets and domination polynomials of paths. International J. Mathematics and Mathematical Sci., Article ID, pp: 542040.
- Brown, J.I., K. Dilcher and R.J. Nowakowski, 2000. Algebric Combinatorics, 11: 197.
- 7. Diudea, M.V., 2006. Carpath. J. Math., 22: 53.
- 8. Diudea, M.V., B. Parv, E.P. John, O. Ursu and A. Graovac, 2003. Distance counting in tori.MATCH Commun. Math. Comput. Chem., 49: 23-36 17. Diudea, M.V., C.L. Nagy, O. Ursu and T.S. Balaban, C60 dimers.
- 9. Folwer, P.W., 1968. Phys. Lett., 131-444.
- 10. Pisanski, T. and M. Randic, 2000. In Geometry at Work, M.A.A. Notes, pp. 53.
- 11. Douglas, B., 2001. West, Introduction to Graph Theory, 2001 by Prentice Hall.