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Abstract: Meteorological drought prediction depends on the ability to forecast seasonal precipitation. In this
paper, a well known statistical machine learning method, Support Vector Machine (SVM), is used to predict
seasonal variations of the Standardized Precipitation Index (SPT) in four reservoir basins supplying the water
demands of Tehran, the capital city of Iran. The lustorical time series of the meteorological variables including
air temperature and geopotential height at the surface, 300, 300, 700 and 850 mbar levels in the geographical zone
covering 10° to 60° north latitudes and 0° to 90° east longitudes have been selected as the model predictors.
Mutual Information (MT) has been used for feature selection among the aforementioned predictors. The selected
predictors 1 the months of April to August have been used as the SVM model mputs to predict seasonal SPIs
i autumn, winter and spring seasons. The results have been compared with those of the Artificial Neural
Networks (ANN). The comparison has shown that SVM outperforms ANN in terms of the Normal Mean
Squared Error (NMSE), Mean Squared Error (MSE) and the coefficient of determination (R*). The results have
shown that the seasonal SPI values can be predicted by the proposed model with 2 to 5 months lead-time with

enough accuracy to be used in long-term water resources planning and management in the study area.
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INTRODUCTION

Drought prediction has been a challenge mn water
resources planning and management for a long time, but
1n recent years, the severity of the droughts affecting the
Middle East and North African (MENA) region has
brought into focus the need to improve the techniques for
predicting such droughts with some measure of accuracy.

Different studies conducted over the past decades
have shown that meteorological drought i1s never the
result of a single cause. A great deal of research has been
carried out on the role of interacting systems in
recogmtion of the regional patterns of climatic variability.

Two major approaches have been prominent in the search
for appropriate meteorological drought prediction
techniques. These include the use of telecommections and
development of numerical models. The studies on
teleconnections have been mostly focused on recognition
of spatial patterns of climate variability in certain regions
that are highly affected by some of these well-known
teleconnections such as El Nmo Southern Oscillation
(EN'SQ) [1]. While these patterns tend to recur periodically
with enough frequency to improve our ability for seasonal
prediction of dry or wet spells, less work has been done
about the regions that are not highly affected by these
teleconnections. Iran 1s not an exception [2].
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Nazemossadat [3], Nazemossadat and Cordery [2]
and Zahraie and Karamouz [4] investigated the North
Atlantic Oscillaton (NAQ) and ENSO teleconnections
to the precipitation and rmoff m different areas mn Iran.
The results of their studies showed that however some
correlations between the teleconnections and climate
variabilities can be detected but they are not strong
enough to offer opportunities for meteorological drought
prediction.

In studying statistical properties of the drought
events and theiwr cormrelations with teleconmections,
different techmques such as Markov Chain and Log-
Linear methods [5-8], Artificial Neural Network (ANN)
[S, 10] and pattern clustering [11] have been used. Raziei
et al. [12] also studied spatial patterns and temporal
variability of droughts in Western Iran. They also showed
that there is not a clear evidence for a link between
hydrological droughts in this region and ENSO events.

There are a limited number of works on the
applications of data miming and statistical learming
methods in SPT prediction. Cancelliere et al. [13] and Paulo
et al. [7] utilized Markov Chain models for SPT prediction.
The model developed by Cancelliere et al. [13] had a 3-
month prediction lead time which can be used in the
drought warning systems. Mishra and Desai [9] used
Autoregressive Integrated Moving Average (ARIMA)
and Direct multi-step neural network (DMSNN) models for
SPI prediction with 1- to 12-month prediction lead-time.
Their results showed DMSNN outperformed ARIMA.
Kamban and Elshorbagy [14] also utilized ANN for
predicting clustered SPI values. Barros and Bowden [15]
tried to extend the lead time of operational drought
forecasts. Their research strategy was to explore the
predictability of drought severity from space—time varying
mdices of large-scale climate phenomena relevant to
regional hydrometeorology (e.g. ENSO) by mtegrating
linear and non-linear statistical data models. They used
MI values to identify and select predictor variables among
spatial datasets of precipitation, sea surface temperature
anomaly patterns, temporal and spatial gradients of
outgoing long-wave radiation and the wind-stress
anomaly.

The Support vector machines (SVMs) are a set of
related  supervised
classification and regression. SVMs have gained grounds
in the fields which have traditionally been the ANNs areas
of strength. In the recent years, different applications of
the SVMs have been reported m the hydrological and
climatic studies [16-19]. Dibike ef al. [20] applied SVM in

learning  methods  used for

remotely sensed image classification and rainfall/runoff
modeling. They compared performances of SVM, ANN
and a conceptual ramfallmnoff model m  modeling
rainfall-runoff process m three catchments and showed
SVM superiority. The flexibility and capabilities of
SVMs in detecting data structures make it ideally
suited for drought prediction where good generalization
performance 1 capturing non-linear regression
relationships between the predictors and the predictand
is required.

The aim of this paper 1s to assess the performance of
SVM in recognizing repetitive statistical patterns in
variations of meteorological variables in a relatively large
region surrounding Tran that might offer opportunities to
improve our ability for prediction of seasonal values of
SPI as an indicator of meteorological drought severity.
The case study of this research includes the catchments
of four reservoirs supplying water consumption of
Tehran, the capital city of Iran The major difference
between tlis research and the previous works 1s in
utilizing SVM  for SPT prediction and
incorporating a relatively large dataset for choosing the

seasonal

model predictors. This 1s also the first attempt for
developing SPI prediction model for the study area. In the
next sections of the paper, a brief introduction to SPT and
SVM is presented. Then the proposed approach for
feature selection method and the results of the case study
are discussed.

MATERIALS AND METHODS

Standard Precipitation Index (SPI): SPI was developed
by McKee et al [21] to meteorological
drought severity and precipitation deficit.

assess
Positive
(negative) SPI values indicate greater (less) than median
precipitation. As a measure of departure from the median,
the SPI is a probability indication of the severity of
the wetness or aridity. McKee et al. [21] selected the
Gamma distribution for fitting monthly precipitation
data. In calculating SPI, the Gamma distribution 1s then
transformed to a Gaussian distribution. The standardized
then
average of zero and a standard deviation of one. All of
the above steps make the SPI independent of both the
location and the range of values so that different seasons

anomaly is computed with results having an

and climate areas are represented on an equal basis
[22,23]. For this purpose, McKee ef al. [21] divided SPI
values to seven linguistic drought classes as shown in
Table 1.
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Table 1: SPI classes of meteorological drought [21].

Linguistic drought condition SPI Acronym
Very wet more than +2 VW
Wet 1.5t0 1.99 w
Normal Wet 1to1.49 NwW
Normal 0.99 to -0.99 N
Normal Dry -1to-1.49 ND
Dry -1.5t0-1.99 D
Very Dry less than -2 VD
(a) 4 (b) 4
o ©
O
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»

Input space

Feature space

Fig. 1: A nonlinear transformation function ¢(.) defined to convert a non-linear problem in the original lower dimensional
input space (a) to linear problem in a higher dimensional feature space (b). (The stars and circles denote the data

points) [16].

Support Vector Machine (SVM): Empirical data modeling
and structure recognition is a challenge in many
engineering realms. To address this challenge, a meta
model has to be developed to deduce the system
responses that have yet to be observed. Both
quantity and quality of the systems observations
influence the performance of this constructed
empirical model. It must be noted that the performance
of the constructed Meta model can be highly influenced
by non-uniformity, ambiguity and sparse distribution of
the input space in problems that mostly have high
dimensions. As a result, the problem may be under ill
posed conditions [24] in the sense of Hadamard [25]
Performance of the traditional Artificial Intelligence
Methods (AIM) has significantly been affected by
difficulties in generalization and producing models that
can over fit the data.

SVM is a new generation of statistical learning
methods which aim to recognize the data structures. The
foundations of SVM were developed by Vapnik and
Cortes [26]. Its formulation is based on the Structural Risk
Minimization (SRM) principle. It has been shown that the
application of SRM in SVM leads to a better performances
than the application of traditional Empirical Risk
Minimization (ERM) principle employed in traditional
AlIMs. SRM minimizes an upper bound on the expected
risk, as opposed to ERM that minimizes the error on the
training data. Another SVM feature in detecting the data

structure is transformation of original data from input
space to a new space (feature space) with new
mathematical paradigm entitled Kernel function. For this
purpose, a non-linear transformation function ¢(.) is
defined to map the input space to a higher dimension
feature space, 7 (Figure 1). According to Cover’s

theorem [27] a linear function, {.), can be formulated in the
high dimensional feature space to represent a non-linear
relation between the inputs (x,) and the outputs (y,) as
follows:

v = f(x) = (w.0(x)) +b (N

Where w and b are the model parameters. This
mathematical approach has been presented previously by
Aizerman et al. [28]. Figure 2 shows the schematic
structure of a general SVM. SVM can be used for both
regression and classification. In this paper, the terms
Support Vector Regression (SVR) will be used.

The first generations of SVMs  were
developed to solve the classification problems,
but recently regression based SVMs are developed
using more sophisticated error functions [28]. SVM
performs regression by wusing an e-sensetive loss

function ||y_f(x)||g =max{0y||y-f(x)||_g}. This loss

function only considers errors bigger than a certain
threshold € > 0. SVM finds the optimal solution of the
following primal problem:
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Fig. 2: Schematic architecture of SVM [16].
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Where:

L: number of data points in the training dataset
C: model parameter

x;: feature space data points

W: Optimization problem solution

&: model residuals (&; =y, — f(x;))

& and gr are positive slack variables and C is a positive
1

real valued and pre-specified constant. The constant C
determines the amount up to which deviations from ¢ are
tolerated. Deviations above ¢ are denoted by &, whereas
deviations below ¢ are denoted by £ The large values

of C might be a sign of over-fitting.

Feature Selection and Mutual Information (MI) Index:
The feature selection process can be considered a
problem of global combinatorial optimization in machine
learning, which reduces the number of features, removes
irrelevant, noisy and redundant data and results in
acceptable classification accuracy. Feature selection
methods have received much attention in the
classification literature. Some useful methods for feature
selection such as heuristic optimization, backward and
forward sequential approaches and statistical filters such
as MI in a number of applications of neural networks in
water resources modeling problems can be found in the

literature. MI has recently been utilized as a more
appropriate statistical measure for feature selection during
multi-dimensional model development, since it does not
make any additional assumption about the dependency
structure of the variables. MI has been found to be robust
due to its insensitivity to noisy behavior [30]. MI for two
discrete random variables X and Y can be defined as:

p(x,y) 3)

MIl(x,y)= Y))
()=, Y, plx.)log( PI(x)pa(y)

yeYxeX

where p(x,y) is the joint probability distribution function
of x and y and P,(x) and P,(x) are the marginal probability
distribution functions of x and y, respectively. MI is
always positive and is also a symmetric function (i.e.
I(x,y) = I(y,x)). In this study, MI is used for selecting the
proper set of predictors of the SVM model which will be
trained for seasonal SPI prediction.

The next section of the paper explains the proposed
methodology for utilizing SVM, SPI and MI for predicting
meteorological drought in the study area.

Methodology: The proposed procedure for meteorological
drought prediction consists of the following steps:

Section of the Predictors and the Predictand: In this
study, the predictand is the 3-, 6- and 9- month average
SPI values. The seasons in which the SPI values are
predicted, should be selected in a way to assist in the
water resources planning and management decision
making processes. The model predictors (meteorological
variables) can be selected based on the results of the
previous studies on the statistical relationships between
the variations of these variables and SPI values. The
choice of predictors should create enough prediction
lead-time for the water resources managers and the
decision makers to benefit from the model predictions.

SPI Estimation: Since the main purpose of this study has
been to predict the meteorological drought severity
affecting the study area, the SPI values for the selected
seasons in step 1 are estimated using areal average
precipitation over the basins. In this study, the optimized
moving Inverse Distance Weighted (IDW) method
presented by Abedini and Nasseri [31] has been utilized.
IDW is based on the assumption that the interpolating
surface should be influenced mostly by the nearby points
and less by the more distant points. The areal average
precipitation values for each basin are then transformed
to SPI using the procedure explained in section 2.
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Feature Selection: Since different combinations of month,
meteorological vanables and geographical zones can make
the number of the candidate predictors very large, using
a feature selection method is essential. This process can
vary from one region to another. Since there are no
general guidelines for selection of the predictors in
different parts of the world, site-specific studies should be
carried out. In this study, MI index has been used as a
feature selection filter to select the suitable subsets of the
predictors that provide the best prediction accuracy.

SVM Model Training, Validation and Testing: SVR is
used in this study to predict the numerical values of
seasonal SPl as a continuous variable. The available
dataset should be partitioned into training, validation and
testing datasets. Standardization 1s widely used as a pre-
processing step while using algorithms such as SVM and
ANN to reduce systematic bias of the datasets. To utilize
the SVR model m this study, 50% of the available dataset
is selected for training while half of the remaining 50% is
used for testing and the rest 1s used for validation. In the
training phase, different Kernel functions are selected and
their parameters and also the model parameters mcluding
C and ¢ are calibrated. Mean Square Error (MSE) is used
as the statistical criterion for calibrating the model. The
next phase 1s called validation m which the remaiming 25%
of the available dataset is used to regenerate the SPI
values and assess the performance of the tramned models.
After selection of the best Kernel function based on the
validation dataset, the remaining data is used for testing
the model performance.

Evaluation of the Model Predictions: Various error
estimation indices such as NMSE, MSE and or R can be
used for assessing the accuracy of SVR predictions. They
can be estimated using the following equations:

A

2 o) (4)
MSE =1
n

Table 2: Kernel functions and corresponding parameters

H
2
Z(Xp 7Xo) (5)
NMSE = -1 >
.S

R () X, Xy D X, D X,) (6)
Y X, - X,y X, - X))

Where X, is predicted SPI and X, is observed SPI and # is
the number of the data points. It should be noted that
accuracy of the predictions is usually correlated with the
lead-time of the predictions. The longer the lead-time is,
the less accuracy is expected however the predictions
might be more useful in terms of guiding the multi-

seasonal water resources planmng decision making
processes.

Comparison: Tt is usually suggested to compare the
predictions of the proposed models with other techniques
which have been previously used by different researchers
for the same purpose. In this study, the results of the SVR
models are compared with those of ANN models
(Multilayer Perceptron Models), respectively. Readers
could find comprehensive mtroduction and interpretation
of ANN in Haykin [31].

Case Study: The study area 1s located between 34°-36.5°
North latitudes and 50°-53° East longitudes. Over 70
percent of about cne billion cubic meters of water
consumption in Tehran, the capital city of Tran and its
suburbs 1s supplied by five dams, namely Latian, Karaj,
Taleghan, Mamloo and Lar out of which the basins of the
first four dams are considered as the case study of this
research. The long-term average seasonal rainfall over
these basins is shown in Table 3. The observed time
series of the precipitation data in 31 rain gauges have
been used in the period of 1976-2007 for estimating areal
average precipitation over the basins using the optimized
IDW method. Figure 3 shows the location of these rain

Parameters Kemel type Kernel function
Linear K(xz)= (x,z)

0<c<s, 0<p<5 Polynomial E(xz)= ((x,z) +e)

-5<b<5, -5<¢<5 Sigmoid K(xz)=tanh(p{xz}- )

Sy s

Radial Basis Function (RBF)

E{xz)= exp(~ )

2
|-z
Y
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Table 3: Scenarios and long term average precipitation of the four basins of the case study (cm)

Long term Average Annual Rainfall (cm)

Scenario Seasons Taleghan Karaj Latian Mamloo
SPI1 Spring 22.5 229 20.2 21.1
SPI2 Autumn 18.5 17.4 16.5 20
SPI3 Winter 16.3 16.5 14.8 16.2
SPI4 Autumn+Winter 34.8 339 31.3 36.2
SPIS Winter+Spring 38.8 39.4 35 37.3
SPI6 Autumn+Winter+Spring 573 62.3 55.2 58.4
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Fig. 3: Locations of the rain gauges the basins

gauges. The four time series of the monthly average
precipitation have then been converted to SPI time series
based on the methodology presented in Section 2 of the
paper.

The major decisions regarding water allocation
from the Tehran reservoirs are made during the summer
and at the first three months of the water year based
on the available water at the end of the summer and
the precipitation and runoff predictions of the
following reservoir refill seasons. Therefore, the SPI
predictions issued in summer and autumn seasons
showing aridity or wetness of the reservoirs refill
seasons can be helpful in this decision making process.
The seasons in which the SPI values is predicted in
this study, are shown in Table 3. As can be seen in
this Table, the six scenarios (seasons) include 3-, 6- and
9-month average SPIs starting at the beginning of
October. Accurate predictions of SPIs for the
selected seasons provide valuable information for the
water managers responsible for making decisions
regarding supplying the water demands of Tehran.

The goodness of fit of Gamma distribution to the average
precipitation estimated for the study area basins is
investigated and the results have shown a proper fit.

In the previous studies carried out by Karamouz et al.
[10] and Zahraie and Karamouz [4], statistical relations
between the SLP and the seasonal precipitation variations
in certain locations in geographical zone shown in Figure
4 have been studied. While they also considered some
locations in the North and Central parts of the Atlantic
Ocean (which are not shown in Figure 4), less attention
was paid to the statistical relations that might exist
between variations of the precipitation over Iran and the
meteorological variables in certain locations in east of the
region shown in Figure 4 (e.g. North of India and China).
In this study, the time series of the meteorological
variables including air temperature and geopotential
heights at the surface, 300, 500, 700 and 850 mbar levels in
the geographical zones shown in Figure 4 in the period of
1976-2007 are considered as the candidate predictors for
the SPI prediction model. These time series are obtained
from NCEP/NCAR reanalysis dataset [33].
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Fig. 4: Geographical zones for estimating predictors and with highest MI values

As shown in Figure 4, In order to cover the selected
geographical region, it is divided to 180 square zones with
the dimensions of 5° x5°. In order to achieve a suitable
prediction lead-time, the time series of the meteorological
variables in the months of April through August are
utilized to predict SPI values in the first three seasons of
the following water year (seasons are shown in Table 3).
The set of predictors in this study includes 180 (square
zones) x 9 (predictors described in the before paragraph)
x 5 (months of April through August)=8100 time series
which must be filtered to find the best subset that
provides the highest accuracy of the predictions.

RESULTS AND DISCUSSION

As it was explained in the previous section of this
paper, 8100 candidate predictors should be analyzed to
find the best set of predictors for each SPI scenario. MI
which is used as a static filter for selecting the best set of
predictors has been estimated for all combinations of six
SPI scenarios and 8100 series of predictors. Figure 4
shows highest MIs for different SPI scenarios. This figure
shows that the predictors in the following zones have the
highest mutual dependence with the SPI variations:

SPI1 Mostly over Red Sea and Arabian Sea

SPI2 Scattered over Black Sea, Arabian Sea, Indian
Ocean, North of India and South of Russia

SPI3 Mostly Southeast of Iran and Oman Sea and

North of Indian Ocean

SPI4 Eastern part of India, Eastern Europe and west
of Russia

SPI5 Mostly over Arabian Sea and Red Sea

SPI6 Mostly over Saudi Arabia and Sudan

Based on these results, the predictors with highest
MI values have been chosen for each SPI scenario
(Table 4). In Table 4, only the set of the predictors which
have resulted in higher accuracies of predictions are
presented. The LIBSVM toolbox [32] has been used for
model training, validating and testing. Table 5 shows the
selected Kernel functions and optimal values of the
parameters obtained for each scenario-basin. The results
of this study have shown that overall the linear Kernel
function represents the best results however in three
scenarios shown in Table 5, Polynomial and RBF Kernel
functions have shown better performances. The calibrated
hyper-parameters C and € and the kernel function
parameters, Y, ¢ and p, are also shown in Table 5.

According to derived MSE, NMSE and R* indices in
the model training and validation, the best model
validation results based on NMSE have been obtained for
SPI6, SPI1/SPI2, SP16 and SPI1 for Karaj, Latian-Mamloo,
Latian and Taleghan Basins, respectively.

The characteristics of the ANN models are set to
two types of back-propagation training paradigm with one
and two hidden layers and sigmoid transfer function.
Since the selection of the number of hidden neurons and
network configuration in ANNs is dependant to the
problem and difficult, it is determined by trial and error.
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Table 4: Selected WM predictors for 8PT scenarios

Seasonal Scenario

Reservoir Basin

Selected Predictors Using MI Vahies

SPI1

SPI2

SPI3

SPH4

SPIS

SPl6

Latian
Mamloo
Taleghan
Latian
Mamloo
Karaj
Taleghan
Latian
Taleghan
Karaj
Latian

AT1000% AT300,AT500,AT700,ATS50,GHS50%*
AT1000,AT300,AT500,ATS50,GH300,GH500
GHS00,GHT00
AT300,AT700,ATS50,GH300,GHS00,GH700,GHS50
AT300,GH500,GHS50

AT500,GH500,GHS50
AT1000,AT500,AT700,ATS50,GH300,GH700,GHS50
AT300,AT500,AT500,GHS00,GHTO0
GHS00,GHT00,GHSS0
AT300,AT500,AT850,GH700,GHS50
AT300,AT700,GH500,GH700,GHS50

*AirTemprature at 1000 mbar
**Geopotential Height at 850 mbar

Table 5: The best Kernel functions and the calibrated values of their parameters and the model hyper-parameters in each scenario.

Scenario Basin Cx1000 £ Kemel Type* Kemel Parameters* MSE
SPI1 Latian 58 0.9 Linear - - 0.06
Mamloo 650 0.3 Linear - - 0.08
Taleghan 345 0.7 Linear - - 0.14
SPI2 Latian 581 0.9 Linear - - 0.34
Mamloo 68 0.1 RBF y=-0.91 - 0.4
SPI3 Karaj 12 0.5 Polynomial =4 =472 0.34
SPI4 Taleghan 154 0.7 Linear - - 0.56
SPIS Tatian 29 0.8 Linear - - 0.57
Taleghan 66 0.06 RBF y=1.16 - 0.23
SPl6 Karaj 963 0.4 Linear - - 0.14
Latian 497 0.1 Linear - - 0.33
*See Table 2 for the equations of the Kernel functions
Table 6: Comparison between the performances of the SVR and ANN model in the test dataset.
SVR ANN
Scenario Basin MSE NMSE R? MSE NMSE R?
SPI1 Tatian 0.59 0.53 59 0.6 0.53 52
Mamloo 0.15 0.11 92 1.15 0.87 32
Taleghan 0.30 0.33 73 0.15 0.17 81
SPI2 Latian 0.76 1.19 15 1.02 1.58 9
Mamloo 0.73 1.29 76 0.87 1.54 31
SPI3 Karaj 0.29 0.49 75 0.55 0.92 41
SPI4 Taleghan 2.48 1.30 54 0.7 0.36 65
SPIS Latian 0.34 0.17 89 0.57 0.30 67
Taleghan 0.22 0.11 78 0.7 0.36 65
SPl6 Karaj 0.05 0.04 96 0.29 0.26 85
Tatian 0.1 0.08 97 0.01 0.03 99
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Table 7:Lead-times of the SPI forecasts

Forecast Lead-time (month)

Watershed SPI1 SPI2 SPI3 SPI4 SPI5 SPI6
Karaj - - 2 - - 2
Latian 5 1 - - 2 3
Mamloo 5 2 - - - -
Taleghan 5 - - 2 4 -

Predicted SPT

Observed SPI

Fig. 5: Predicted versus observed SPI values for all scenario-basins in the test dataset

The network configuration with different training steps
and neurons have been used and according to MSE
criteria and sigmoid transfer function, a three layer ANN
with back-propagation training paradigm and two neurons
in hidden layer was selected and trained by the same set
of datasets used for SVR training and testing. The best
achieved learning rate is 0.1 and the number of iterations
has been fixed at 1000. The results of the ANN model for
the test dataset are presented in Table 6 which shows that
based on derived NMSE, SVR outperforms ANN in almost
all scenarios, but ANN works better than SVR in SPI1 and
SPI4 for Taleghan basin and SPI6 for Latian basin. The
results of the ANN model for the test dataset are
presented in Table 7 which shows that based on derived
NMSE, SVR outperforms ANN in almost all scenarios, but
ANN works better than SVR in SPI1 and SPI4 for
Taleghan basin and SPI6 for Latian basin. Figure 5 shows
the scatter plot of predicted versus observed SPI values
for all scenario-basins in the test dataset. It also indicates
the higher accuracies of SVR predictions when available
data for training are limited. Table 8 shows the model lead-
time for different SPI scenario-basins based on the
selected predictors. As it can be seen in this Table, the

longest lead-time is 5 months for the SPI1 scenario. This
scenario which is among those selected for the Taleghan
Basin provides useful information to the reservoir
operators.

CONCLUSION

In this paper, SVM has been utilized for prediction of
meteorological drought at seasonal time-scale using
specific variables of NCEP/NCAR reanalysis dataset as
the model predictors. MI has been used as the feature
selection filter to decrease the input space dimensions.
One of the major obstacles against development of the
prediction models for hydrologic variables is the lack of
long records of the predictors for calibration and
validation of these models. Using NCEP/NCAR reanalysis
dataset which is accessible easily through web has made
the calibration and future updating of this model a
relatively easy task. The results of this study have shown
that the choice of the predictor variables can significantly
affect the accuracy of the model results. MI which has
been suggested by other researchers for feature selection
has also proven to be useful in this study.
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The implemented statistical learning method, SVM, is
more sensitive to selection of kemel function and its
parameters; it is found that linear kernel function
outperformed other kernel functions in SPI prediction. In
assessing the performance of the proposed models in
prediction of seasonal SPIs, the prediction lead-time
should also be taken mto account.

In assessing the performance of the proposed models
mn prediction of seasonal SPIs, the prediction lead-time
should also be taken into account. The longest lead-time
1s for SPI1 scenario and the rest of the selected scenario-
basins have two or three months prediction lead-time
which provides enough time for the decision makers to
adjust the water allocation policies. The predictions for
the SPI6 scenario in Karaj and Latian Basins which covers
all the reservoir refill season 1ssued at the end of July also
provide valuable information for the decision makers. Two
umportant 1ssues leads up to good predictions, regression
based on SVM concept and selected meteorological large
scale signals with MI.

The proposed approach to predict SPI can be
extended to the use of a variety of other meteorclogical
variables such as wind speed and relative humidity. Other
feature selection techniques in combination with various
optimization techniques can also be used for automatic
feature selection which can be another direction for
further research.
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