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Abstract: This paper proposed a fractional model for the flow rate and characteristic of the impurity of 
order α, β(0<α, β≤1) respectively, which describes one dimensional dynamical flows of electrically 
conducting fluid. In this model fractional derivatives are described in the Caputo sense. The beauty of the 
paper is residual analysis which shows that our approximate solution converges very rapidly to the exact 
solution. Numerical results show that the HPM is easy to implement and accurate when applied to the time 
fractional partial differential equation. Numerical results are presented graphically. 
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INTRODUCTION

In the past few decades, fractional differential
equations (FDEs) have been the focus of many 
studies due to their frequent appearances in various 
applications in fluid mechanics, viscoelasticity, biology, 
physics, electrical network, control theory of dynamical 
systems, chemical physics, optics and signal
processing, as they can be modelled by linear and
non-linear fractional order differential equations. The
book by Oldham and Spanier [1] has played a key role 
in the development of the subject. Some fundamental 
results related to solving fractional differential
equations may be found in Miller and Rose [2],
Podlubny [3], Kilbas and Srivastava [4], Diethelm and 
Ford [5], Diethelm [6].

We consider the simplest dissipative one
dimensional model of a medium of viscous heat
conducting liquid with pressure taking the transfer of 
passive impurity into account, which has no inverse 
effect on the dynamics, are described by the following 
system of nonlinear partial differential equations
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where w = w(x,t) is the flow rate and c = c(x,t) is a 
characteristic of the impurity (the temperature in the 

case of heat transfer or the concentration in the case of
mass transfer in a two component liquid). Here ν and χ
are the coefficient of viscosity and thermal diffusivity
(or the diffusion coefficient), the non-dimensional ratio 
of which is the Prandtl number (or Schmidt) Pr = v/χ.

The objective of this paper is to extend the
application of the homotopy perturbation method
(HPM) to obtain analytic and approximate solutions of 
the time fractional system of nonlinear partial
differential equations (1) of the flow rate and
characteristic of the impurity. The homotopy
perturbation method was first proposed by the Chinese 
mathematician He [9] and was successfully applied to 
solve nonlinear wave equations by He [10]. The
essential idea of this method is to introduce a homotopy 
parameter, say p, which takes values from 0 to 1, when
p = 0, the system of equations usually reduces to a 
sufficiently simplified form, which normally admits a 
rather simple solution. As p gradually increases to 1, 
the system goes through a sequence of deformations, 
the solution for each of which is close to that of the 
previous stage of deformation. Eventually at p = 1, the 
system takes the original form of the equation and the 
final stage of deformation gives the desired solution. 
One of the most remarkable features of the HPM is that 
usually just few perturbation terms are sufficient for 
obtaining a reasonably accurate solution. Nonlinear
partial differential equations have many applications in 
various fields of science and engineering such as fluid
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mechanics, thermodynamics, mass and heat transfer,
micro electro mechanics system etc. It is difficult to 
handle nonlinear part of these equations. Many
researchers [11-17] applied HPM to find the solution of 
various nonlinear fractional ordinary and partial
differential equations describing various physical and 
engineering models. Recently, Shidfar et al. [18] have 
solved the nonlinear system of partial differential
equation arising in magnetic field by using homotopy 
perturbation method. This [18] motivated us for the 
present work.

PRELIMINARIES AND NOTATIONS

In this section, we give some definitions and
properties of the fractional calculus which are used 
further in this paper. 

Definition 2.1: A real function ƒ(x), x>0, is said to be 
in the space Cµ,  µ∈R, if there exists a real number 
p(>µ), such that ƒ(x) = xpƒ1(x), where ƒ1(x) = C[0,∞)
and it is said to be in the space mCµ  if and only if 

ƒ(m)∈Cµ, m∈N.

Definition 2.2: The Riemann-Liouville fractional
integral operator (jα) of order α≥0, of the function 
ƒ∈Cµ, µ≥-1, is defind as 

x
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Properties of the operator (jα), can be found in 
[1-4], we mentation only the following. For ƒ∈Cµ, µ≥-1
and γ≥-1:

(1) J J f ( x ) J f(x)α β α+β=
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The Riemann-Liouville derivative has certain
disadvantages when trying to model real world
phenomena with fractional differential equations.
Therefore, we shall introduce a modified fractional
differential operator Dα proposed by Caputo in his work 
in the theory of viscoelasticity [19].

Definition 2.3: The fractional derivatives (Dα) of ƒ(x)
in the Caputo’s sense is defined as :
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The following are two basic properties of the
Caputo’s fractional derivative:

Lemma 2.1: If m 1 m ,m N− < α ≤ ∈  and nf C , 1,µ∈ µ≥− then
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The Caputo fractional derivatives are considered 
here because it allows traditional initial conditions to be 
included in the formulation of the problem. 

Definition 2.4: For m to be the smallest integer that 
exceed α, the Caputo time fractional derivatives
operator of α>0 is defined as:
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METHOD OF SOLUTION

We consider the following fractional version of the standard nonlinear partial differential equations of the flow 
rate and characteristic of the impurity
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with initial conditions w(x,0) = ƒ(x) and c(x,0) = g(x).
We construct the following homotopy

2
t xx x x
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2
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to solve the system of PDEs (4).
Now applying the classical perturbation technique, 

we can assume that the solutions, w(x,t) and c(x,t) of
Eqs. (5) can be expressed as a power series in  p as
follows

2 3
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Substituting (6)-(7) into (5) and equating the
coefficients of like powers of p, we get the following
set of differential equations
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and so on. The above system of nonlinear equations can 
be easily solved by applying the operator tJα to (8)-(11)
giving the various components wn(x,t) and cn(x,t), thus 
enabling the series solution to be entirely determined. 
The solutions w(x,t) and c(x,t) are given by

NN
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The series solution converges very rapidly. The 
rapid convergence means only few terms are required to 
get the approximate solution.

ILLUSTRATIVE EXAMPLES

In this section, we illustrate the solution and show
the capability of the method. Two numerical examples
are considered. As the exact solutions of the two 
examples are not known, to establish the accuracy of 
the proposed method, we define residuals 

m m m 1R (w) w w −= −

and
m m m 1R (c) c c −= −

and show that Rm(w) and Rm(c) are monotonically 
decreasing with m. In both example, we have taken all 
kinetic coefficient same i.e. ν = χ = γ = 1 for all 
graphical results. 

Example 1: We consider the model described by
system (4) with initial conditions as (Shidfar et al. [18])
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12
+

=
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(1 x)c(x,0)

12
−= [16] (13)

Applying the operator tJα  (the inverse operator of 
the Caputo derivative tDα ) on both sides of Eqs. (9)-
(11), we obtain

0
(5x 7)w (x,t) w(x,0)

12
+

= =

0
(1 x)c (x , t ) c(x,0)

12
−

= =

1
(13x 17) t

w (x,t)
72 ( 1)

α+
= −

Γ α +

1
(5x 1) tc(x, t )

72 ( 1)

β+
=

Γ β +



World Appl. Sci. J., 13 (12): 2455-2462, 2011

2458

Fig. 1: Plots of residuals R4(w) and R5(w) for α = β = 1
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Fig. 2: Plot of w(x,t) vs. time t at x = 1 and β = 1 for different value of α
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The rest of components of wn(x,t) and cn(x,t) can be obtained similarly and summing them up give the series 
solutions. We have discussed the residual 
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Fig. 3: Plots of residuals R4(c) and R5(c) for α = β = 1
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Fig. 4: Plot of c(x,t) vs. time t at x = 1 and α = 1 for different value of β

between two consecutive terms of the approximate
solutions w(x,t) and c(x,t) where wn(x,t) and cn(x,t) are
the components of the approximate solutions. Residuals 
show that the approximate solution converges to the 
exact solutions. It is seen from Fig. 1(a)-(b) that
residual R5(w) has more accuracy in compare of R4(w).
We can find more accuracy in the approximate
solutions by increasing the value of n. Figure 1(a)-(b)
and 3(a)-(b) show the residual graphs for the
approximate solutions w(x,t) and c(x,t) between the two 
consecutive terms.

The evolution results for the approximate solutions 
w(x,t) and c(x,t) depicted through the Fig. 2 and 4. 
Figure 2 show the approximate solution wn(x,t) for the
different value of αat the constants value of β = α = 1. 
It is seen that the approximate solution wn(x,t)
decreases with increases in t for different value of
α = 0.7, 0.8, 0.9 and for the standard value i.e. α = 1.
Figure 4 show the approximate solution c(x,t) for the 
different value of β. It is seen that the approximate 
solution c(x,t) increases with increases in t for different 
value of β = 0.7, 0.8, 0.9 and for the standard value i.e.

β = 1 at the constants value of α = x = 1. It is to be 
noted that only fifth terms of the homotopy perturbation 
series were used in evaluating the approximate
solutions in all figures. 

Example 2: In the second example, we consider same
system (4) with different initial conditions given as

61 (1 x)w(x,0) log x 5
12 64

 +
= − + + 

 
and

61 (1 x)
c(x,0) log 5x 13

12 64
 +

= − + + 
 

(14)

Solving Eq. (9)-(11), with the above initial
conditions, we obtain

6

0
1 (1 x)

w (x,t) w(x,0) log x 5
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 
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Fig. 5: Plots of residuals R3(w) and R4(w) for α = β = 1
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Fig. 6: Plot of w(x,t) vs. time t at x = 1 and β = 1 for different value of α
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Similarly, the rest of components of wn(x,t) and
cn(x,t) can be obtained giving the series solutions.
Again, we have discussed the residual 

n n n 1R (w) w (x,t) w (x,t)−= −

and
n n n 1R (c) c ( x , t ) c (x,t)−= −

between two consecutive terms of the approximate
solutions w(x,t) and c(x,t) Residuals show that the
approximate solution converges to the exact solutions. 
It is seen from Fig. 5(a)-(b) that residual R5(w) has 
more accuracy in compare of R4(w). We can find more 
accuracy in the approximate solutions by increasing 
the value of n. Figure 5(a)-(b) and 7(a)-(b) show the 

residual graphs for the approximate solutions w(x,t) and
c(x,t) between the two consecutive terms.

Figure 6 and 8 show the approximate solutions for 
the different value α and of β at the constant value of 
x = 1. It is seen that the approximate solutions w(x,t)
and  c(x,t) decreases with increases in t for different 
value of α = 0.7, 0.8, 0.9, 1 and β = 0.7, 0.8, 0.9, 1 
respectively. In this example, It is to be noted that 
only fifth terms of the homotopy perturbation series 
were used in evaluating the approximate solutions in 
all figures.

CONCLUSION

In this article, the homotopy perturbation method 
is applied to obtain the approximate solution of the

)(3 wR )(4 wR

a b
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Fig. 7: Plots of residuals  R3(c) and R4(c) for α = β = 1
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Fig. 8: Plot of c(x,t) vs. time t at x = 1 and α = 1 for different value of β

nonlinear system of time fractional partial differential 
equations of the flow rate and characteristic of the 
impurity. In both examples, residual graphs show that 
the approximate solutions converge to the exact
solutions in less computational work. It is obvious that 
the HPM is a very powerful, easy and efficient
technique for solving various kinds of nonlinear
problems in science and engineering without many 
assumptions and restrictions. The computations
associated with the example in this paper are performed 
using Mathematica7.
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