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Abstract: In this study, Homotopy Analysis Method (HAM) is applied to solve linear and nonlinear 
boundary value problems with particular significance in structural engineering and fluid mechanics. These 
problems are used as mathematical models in viscoelastic and inelastic flows, deformation of beams and 
plate deflection theory. Comparison is made between the exact solutions and the results of the homotopy 
analysis method. The results reveal that this method is very effective and simple and that it yields the exact 
solutions. It was shown that this method can be used effectively for solving linear and nonlinear boundary 
value problems.
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INTRODUCTION

The HAM is developed in 1992 by Chinese
researcher Shi Jun Liao in [1-8]. This method has been 
successfully applied to solve many types of nonlinear 
problems in science and engineering by many authors 
[9-15] and references therein. By the present method, 
numerical results can be obtained with using a few 
iterations. The HAM contains the auxiliary parameter 
 , which provides us with a simple way to adjust and 
control the convergence region of solution series for 
large values of t. Unlike, other numerical methods are 
given low degree of accuracy for large values of t.
Therefore, the HAM handles linear and nonlinear
problems without any assumption and restriction.

This paper discusses the analytical approximate
solution for fourth-order equations with nonlinear
boundary conditions. The general form of the equation 
for a fixed positive integer n, n = 2, is a differential 
equation of order 2n:

( ) ( )2ny f x 0+ = (1)

subject to the boundary conditions

( ) ( ) ( ) ( ) ( )2 j 2 j
2j 2 jy a A , y b B , j 0 1 n 1= = = − (2)

where

( )2j 2 ja x b , A , B , j 0 1 n 1−∞< ≤ ≤ < ∞ = −

are finite constants.
It is assumed that y is sufficiently differentiable 

and that a unique solution of Eq.(1) exists. Problems of 
this kind are commonly encountered in plate-deflection
theory and in fluid mechanics for modeling viscoelastic 
and inelastic flows [1-3]. Usmani [1, 2] discussed sixth 
order methods for the linear differential equation 

( ) ( ) ( )4y P x y q x+ = (3)

subject to the boundary conditions

( ) ( ) ( ) ( )0 2 0 2y a A , y a A , y b B , y b B′′ ′′= = = = (4)

The method described in [1] leads to five-diagonal
linear systems and involves p′, p″, q′, q″ at a and b,
while the method described in [2] leads to nine diagonal 
linear systems.

Ma and Silva [4] adopted iterative solutions for 
Eq(1) representing beams on elastic foundations.
Referring to the classical beam theory, they stated that 
if u= u(x) denotes the configuration of the deformed 
beam, then the bending moment satisfies the relation M 
= -EIu″, where E is the Young modulus of elasticity and 
I is the inertial moment. Considering the deformation 
caused  by  a  load f = f(x), they  deduced,  from  a 
free-body diagram, that ƒ = -v′ and v = M′ = -EIu′″,
where v denotes the shear force. For u representing an 
elastic  beam of length L =1, which is clamped at its left 
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Fig. 1: Beam on elastic bearing

side x = 0 and resting on an elastic bearing at its right 
side x = 1 and adding a load f along its length to cause 
deformations (Fig. 1), Ma and Silva [4] arrived at the 
following boundary value problem assuming an EI = 1:

( ) ( )( )ivu f x,u x , 0 x 1= < < (5)

the boundary conditions were taken as

( ) ( )u 0 u 0 1′= = (6)

( )u 1 0′′ =

and
( ) ( )( )u 1 g u 1′′′ = (7)

where ƒ∈C([0,1]xR) and g∈C(R) are real functions.
The physical interpretation of the boundary conditions 
is that u′″(1) is the shear force at x = 1 and the second
condition in (7) means that the vertical force is equal to 
g(u(1)), which denotes a relation, possibly nonlinear, 
between the vertical force and the displacement u(1).
Furthermore, since u″(1) = 0 indicates that there is no 
bending moment at x = 1, the beam is resting on the 
bearing g.

Solving (5) by means of iterative procedures, Ma 
and Silva [4] obtained solutions and argued that the 
accuracy of results depends highly upon the integration 
method used in the iterative process. Wang, Chen and 
Liao [5] investigated the large deformation of a
cantilever beam under point load at the free tip by using 
the homotopy analysis method. Also Belendez et al. [6, 
7] used classical numerical methods (Elliptic Functions, 
Runge-Kutta,etc) with the aid of Mathematica Software 
package for large and small deflections of a cantilever 
beam.

With the rapid development of nonlinear science, 
many different methods were proposed to solve
differential equations, including boundary value
problems (BVPs). In this paper, it is aimed to apply the 
homotopy analysis method proposed by Liao [8-15] to 
different forms of Eq.(1) subject to boundary conditions 
of physical significance. This method has been
successfully applied to solve many types of nonlinear 
problems  in  science  and engineering by many authors

[16-22]  and  references  therein. By the present
method,  numerical  results  can  be obtained with using 
a few iterations. The HAM contains the auxiliary
parameter  , which provides us with a simple way to 
adjust and control the convergence region of solution 
series for large values of t. Unlike, other numerical 
methods are given low degree of accuracy for large 
values of t. Therefore, the HAM handles linear and 
nonlinear problems without any assumption and
restriction.

BASIC IDEA OF HOMOTOPY 
ANALYSIS METHOD

We apply the HAM [8-15] to linear and nonlinear 
boundary  value problems  with  particular  significance 
in structural engineering and fluid mechanics. We
consider the following differential equation

( )N u x 0  =  (8)

where N is a nonlinear operator for this problem, x
denotes an independent variables, u(x) is an unknown 
function.

In the frame of HAM [8-15], we can construct the 
following zeroth-order deformation:

( ) ( ) ( )( ) ( ) ( )( )01 q L U x;q u x q H x N U x,q− − =  (9)

where q∈[0,1] is the embedding parameter, 0≠  is an 
auxiliary parameter, H(x)≠0 is an auxiliary function, L
is an auxiliary linear operator, u0(x) is an initial guess 
of u(x) and U(x;q) is an unknown function on the 
independent variables x and q.

Obviously, when q = 0 and q = 1, it holds

( ) ( )0U x;0 u x ,= ( ) ( )U x;1 u x= (10)

respectively. Using the parameter q, we expand U(x;q) 
in Taylor series as follows:

( ) ( ) ( ) m
0 m

m 1

U x;q u x u x q
∞

=

= +∑ (11)

where
( )m

m m

U x;q1
u

q 0m! q
∂

=
=∂

(12)

Assume  that  the  auxiliary  linear  operator,  the 
initial guess, the auxiliary parameter   and the
auxiliary  function  H(x) are selected such that the 
series  (11)  is  convergent  at  q = 1, then due to (10) 
we have
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( ) ( ) ( )0 m
m 1

u x u x u x
∞

=

= +∑ (13)

Let us define the vector

( ) ( ) ( ) ( )}{n 0 1 nu x u x ,u x ,...,u x=
 (14)

Differentiating (9) m times with respect to the
embedding parameter q, then setting q = 0 and finally 
dividing them by m!, we have the so-called mth-order
deformation equation

( ) ( ) ( ) ( )m m m 1 m m 1L u x u x H x R u− − − χ  = 


 (15)

where

( ) ( )
( )( )m 1

m m 1 m 1

N U x;q1
R u

q 0m 1 ! q

−

− −

∂
=

=− ∂
 (16)

and

m

0 m 1
1 m 1

≤
χ =  >

(17)

Finally, for the purpose of computation, we will 
approximate the HAM solution (13) by the following 
truncated series:

( ) ( )
m 1

m k
k 0

x u x
−

=

φ =∑ (18)

THE APPLICATIONS OF HAM

In this section, the HAM is applied to different 
forms of the fourth-order boundary value problem
introduced in through Eq.(1).

Example 1: Consider the following linear boundary 
value problem:

( ) ( ) ( )4 xu x 4e u x , 0 x 1= + < < (19)

subject to the boundary conditions

( ) ( ) ( ) ( )u 0 1 , u 0 2 , u 1 2e ,u 1 3e′ ′= = = = (20)

The exact solution for this problem is

( ) ( ) xu x 1 x e= + (21)

According to (9), the zeroth-order deformation can 
ve given by

( ) ( ) ( )( ) ( )
( )

( )

4

4
0

x

U x;q
1 q L U x;q u x q H x x

U x;q 4e

 ∂
− − − = ∂ 

 − 

 (22)

Now it is assumed that an initial approximation has 
the form

( ) 3 2
0u x ax bx cx d= + + + (23a)

where a, b, c and d are unknown constants to be further 
determined.
We choose the auxiliary linear operator

( )( ) ( )4

4

U x;q
L U x;q

x
∂

=
∂

(23b)

with the property

( )3 2L Ax Bx Cx D 0+ + + =

where A,B, C and D are integral constants. 
The linear operator L normally consists of the

homogeneous  part  of  nonlinear operator N whereas 
parameter    and  function H(x) are introduced in 
order  to  optimize  the  initial  guess. In the present 
form  of  the  article H(x) is set to 1 and we try to 
choose   in such a way that they get a convergent 
series. Under the Rule of Solution Expression [12]
denoted by (11), the auxiliary function H(x) can be 
chosen as H(x) =1. In this way we obtain good
approximations  of  such  problems  without  having  to 
go up to high order of approximation and without 
requiring a small parameter. 

We also choose the auxiliary function to be

( )H x 1=

Hence, the mth-order deformation can be given by

( ) ( ) ( ) ( )m m m 1 m m 1L u x u x H x R u− − − χ  = 




where

( )
( )

( )
4

xm 1
1 0 m 14

u x;q
R u u x;q 4e

x
−

−

∂
= − −

∂
 (24)

( )
( )

( )
4

m 1
m m 1 m 14

u x;q
R u u x;q , m 2

x
−

− −

∂
= − ≥

∂
 (25)

Now the solution of the mth-order deformation 
equations (24-25) for m≥1 become
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( ) ( ) ( )1
m m m 1 m m 1u x u x L R u−

− −= χ +   


 (26)

Consequently, the first few terms of the HAM 
series solution are as follows: 

( ) 3 2
0u x ax bx cx d= + + +

( ) 7 6 5 4 x
1

1 1 1 1u x ax bx cx dx 4e
840 360 120 24

 = − − − − −  


( )
11 10

2
2 1 1

9 8 x

1 1
ax bx

6652800 1814400u x u u
1 1cx dx 4e

362880 40320

 + 
 = + +
 + + + 
 

 

.

.
and so on.

Our solution series contain the auxiliary parameter 
 . Similarly, we could choose proper values of   to 
ensure that the solution series converge. We can plot 
the  -curve error (at x= 0.5), as shown in Fig. 2. It is 
seen that convergent results can be obtained when 

2 0− < ≤ . Thus, we can choose an appropriate value 
for  in this range to get convergent solution of the our 
problem. We iterated auxiliary parameter   from-2 to 0 
with 0.01 step length. We obtained tenth order
approximation which contains a,b,c,d . Then, we applied 
boundary conditions to these tenth order
approximations and obtained values of these four
parameters for each different   value. We plotted 
absolute error graphics (  -curve error) related to
values of these four parameters.

We take tenth order approximation as:

2 0 1 2 10U u u u ... u= + + + + (27)

Incorporating the boundary conditions Eq.(20), into 
Eq.(27), the following coefficients can be obtained: (the 
auxiliary parameter  is taken as -1.6)

a = -1.532105007, b = -4.952945425,
c = -10.7136, d = -11.6136

Table 1 is taken as our analytic solution, in which 
the auxiliary parameter  is taken as -1.6. In order to 
verify numerically whether the proposed methodology
leads to high accuracy, we evaluate the numerical
solutions using only tenth order approximation and 
compare it with the exact analytical solution (21). Table 
1 shows the absolute errors between exact solution and 
numerical solution of Eq. (19) with initial condition 
(20). Table 1 shows that the numerical approximate
solution has a high degree of accuracy. As we know, 
the more terms added to the approximate solution, the 
more  accurate  it  will be. Although we only considered 

Fig. 2:  -curve error for example 1



Fig. 3:  -curve for example 1 in u′(0)

Table 1: Comparison of the tenth order approximate solution with 
exact solution

X Exact solution HAM-10th approximation Absolute error 
0 1,000000000 1,000000000 0,000000000
0,1 1,215688010 1,215683190 0,000004820
0,2 1,465683310 1,465689208 0,000005898
0,3 1,754816450 1,754810490 0,000005960
0,4 2,088554577 2,088550766 0,000003811
0,5 2,473081906 2,473081908 0,000000002
0,6 2,915390080 2,915395612 0,000005532
0,7 3,423379602 3,423379639 0,000000037
0,8 4,005973670 4,005973679 0,000000009
0,9 4,673245911 4,673240757 0,000005154
1 5,436563656 5,436563656 0,000000000

tenth order approximation, it achieves a high level of 
accuracy.

Convergence theorem: In this subsection, we prove 
that, if the solution series given by HAM is convergent, 
it must be an exact solution of the considered problem. 
If the series



World Appl. Sci. J., 13 (12): 2428-2435, 2011

2432

( ) ( )∑
∞

=

+
1

0
m

m xuxu

converges, where um(x) is governed by the Eq. (26) 
under the definition (24-25), it must be an exact
solution of Eq. (19) with initial conditions (20).

Proof: If the series is convergent, we can write

( )∑
∞

=

=
0m

m xus

and it holds
( ) 0lim =

∞→
xu nn

Then, using (15) and (23b), we have

( ) ( )1
1

−

∞

=
∑ mm
m

uRxH




( ) ( )[ ]xuxuL mmm

n

mn
1

1
lim −

=∞→
−= ∑

( ) ( )[ ])lim( 1
1

xuxuL mmm

n

mn −
=

∞→
−= ∑

( ))lim(
1
∑
=∞→

=
n

m
n

n
xuL

0=

which gives, since 0≠  and H(x)≠0,

( ) 01
1

=−

∞

=
∑ mm
m

uR


Substituting (24-25) in the above expression,

( ) =−

∞

=
∑ 1

1
mm

m
uR 

( ) ( ) ( ) x
mm

m

m

eqxu
x

qxu
41;

;
14

1
4

1

−−−
∂

∂
−

−
∞

=
∑

( ) xess 44 −−=
0=

This ends the proof.

Example 2: Consider the following linear boundary 
value problem:

( ) ( ) ( )4 xu x 4e u x , 0 x 1= + < < (28)

subject to the boundary conditions

( ) ( ) ( ) ( )u 0 1,u 0 0,u 1 0,u 1 e′ ′= = = = − (29)

The exact solution for this problem is

( ) ( ) xu x 1 x e= − (30)

According to (9), the zeroth-order deformation can 
ve given by

( ) ( ) ( )( ) ( )
( ) ( )

( ) ( )

4 2

4 2
0

x

U x;q U x;q
1 q L U x;q u x q H x x x

U x;q e x 3

 ∂ ∂
− − − = ∂ ∂ 

 − − − 

 (31)

Now it is assumed that an initial approximation has 
the form

( ) 3 2
0u x ax bx cx d= + + + (32)

where a, b, c and d are unknown constants to be further 
determined.
We choose the auxiliary linear operator

( )( ) ( )4

4

U x;q
L U x;q

x
∂

=
∂

with the property

( )3 2L Ax Bx Cx D 0+ + + =

where A,B, C and D are integral constants. We also 
choose the auxiliary function to be

( )H x 1=

Hence, the mth-order deformation can be given by

( ) ( ) ( ) ( )m m m 1 m m 1L u x u x H x R u− − − χ  = 




where

( ) ( ) ( )

( ) ( )

4 2
m 1m 1

1 0 4 2

x
m 1

u x;q u x,q
R u

x x
u x;q e x 3

−−

−

∂ ∂
= −

∂ ∂
− − −



(33)

( )
( ) ( )

( )

4 2
m 1m 1

m m 1 4 2

m 1

u x;q u x,q
R u

x x
u x;q , m 2

−−
−

−

∂ ∂
= −

∂ ∂
− ≥



(34)

Now the solution of the mth-order deformation 
equations (33-34) for m≥1 become

( ) ( ) ( )1
m m m 1 m m 1u x u x L R u−

− −= χ +   


 (35)

Consequently, the first few terms of the HAM 
series solution are as follows: 
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( ) 3 2
0u x ax bx cx d= + + +

( ) ( ) ( ) ( )4 2 10 9 2 8 7 2 6
1

5 2 4 14 13 12 11 10 8 5

1 1 1 1 1u x (2x a x bax 2ca b x 2da 2cb x 2db c x
5040 1512 1680 840 360
1 1 1 1 1 1 1 1

dcx d x x x x x x x x )
60 24 24024 4290 2970 1980 630 420

= − − − + − + − +

− − + − + + − + −



….

and so on.
Our solution series contain the auxiliary parameter 

 . Similarly, we could choose proper values of   to 
ensure that the solution series converge. We can plot 
the  -curve error (at x= 0.5), as shown in Fig. 4. It is 
seen that convergent results can be obtained when 

1 2− ≤ ≤ . Thus, we can choose an appropriate value 
for  in this range to get convergent solution of the our 
problem. We iterated auxiliary parameter   from-1 to 1 
with 0.01 step length. The same procedure was used 
with Example 1.

Fig. 4:  -curve error for example 2



Fig. 5:  -curve for example 2 in u″(0)

Table 2: Comparison of the tenth order approximate solution with 
exact solution

X Exact solution HAM-10th approximation Absolute error 

0 1,0000000000 1,0000000000 0,0000000000
0,1 0,9946538262 0,9946538262 0,0000000000
0,2 0,9771222064 0,9771222064 0,0000000000
0,3 0,9449011656 0,9449011656 0,0000000000
0,4 0,8950948188 0,8950948188 0,0000000000
0,5 0,8243606355 0,8243606355 0,0000000000
0,6 0,7288475200 0,7288475200 0,0000000000
0,7 0,6041258121 0,6041258121 0,0000000000
0,8 0,4451081856 0,4451081856 0,0000000000
0,9 0,2459603111 0,2459603111 0,0000000000
1 0,0000000000 0,0000000000 0,0000000000

We take tenth order approximation as

2 0 1 2 10U u u u ... u= + + + + (36)

Incorporating the boundary conditions Eq.(29), into 
Eq.(36), the following coefficients can be obtained: (the 
auxiliary parameter  is taken as 1.0)

a = b = c = d = 0

Table 2 is taken as our analytic solution, in which 
the auxiliary parameter  is taken as 1.0. In order to 
verify numerically whether the proposed methodology 
leads to high accuracy, we evaluate the numerical
solutions using only tenth order approximation and 
compare it with the exact analytical solution (30). Table 
2 shows the absolute errors between exact solution and 
numerical solution of Eq. (28) with initial condition 
(29). Table 2 shows that the numerical approximate 
solution has a high degree of accuracy. As we know, 
the more terms added to the approximate solution, the 
more accurate it will be. Although we only considered 
tenth order approximation, it achieves a high level of 
accuracy.

Example 3: Consider the following nonlinear boundary 
value problem:

( ) ( ) ( ) ( )4 2u x u x g x , 0 x 1= + < < (37)
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Fig. 6:  -curve for example 3 in u″(1)

Table 3: Comparison of the tenth order approximate solution with 
exact solution

X Exact solution HAM-10th approximation Absolute error 
0 0,000000000 0,000000000 0,000000000
0,1 0,019810000 0,019811253 0,000001253
0,2 0,077120000 0,077110956 0,000000956
0,3 0,166230000 0,166231052 0,000001052
0,4 0,279040000 0,279041637 0,000001637
0,5 0,406250000 0,406252210 0,000002210
0,6 0,538500000 0,538501513 0,000001513
0,7 0,667870000 0,667871989 0,000001989
0,8 0,788480000 0,788480056 0,000000056
0,9 0,898290000 0,898290123 0,000000123
1 1,000000000 1,000000000 0,000000000

subject to the boundary conditions

( ) ( ) ( ) ( )u 0 0,u 0 0,u 1 1,u 1 1′ ′= = = = (38)
Where

( ) 10 9 8 7 6 4g x x 4x 4x 4x 8x 4x 120x 48= − + − − + − + − (39)

The exact solution for this problem is

( ) 5 4 2u x x 2x 2x= − + (40)

We can use similar procedures which was used in 
Example 1-2 and obtain tenth order approximation.
Table 3 shows the absolute errors between exact
solution and numerical solution of Eq. (37) with initial 
condition (38).

CONCLUSION

This study showed that the homotopy analysis 
method  is  remarkably  effective  for  solving boundary

value problems. A fourth-order differential equation 
with particular engineering applications was solved
using the HAM in order to prove its  effectiveness. 
Different forms of the equation having boundary
conditions of physical significance were considered.
Comparison between the approximate and exact
solutions showed that one iteration is enough to reach 
the exact solution. Therefore the HAM is able to solve 
partial differential equations using a minimum
calculation process. This method is a very promoting 
method, which promises to find wide applications in 
engineering problems.
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