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Absrtact: In this study, a numerical algorithm for solving a generalization of a functional differential 
equation known as the pantograph equation is presented. Firstly, the proposed algorithm produces an 
approximate polynomial solution as a power series for the problem. Then, we transform the obtained power 
series into Padé series  form to obtain an approximate polynomial of an arbitrary order for solving 
pantograph equation. The structure and advantages of using of the proposed method are presented. To show 
the validity and applicability of the numerical method some linear and nonlinear experiments are examined. 
The results reveal the high accuracy and efficiency of the proposed method. 
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INTRODUCTION

Functional differential equations with proportional 
delays  are  usually  referred  as  pantograph equations 
or generalized equations. The name pantograph
originated  from  the  study [1] by Ockendon and 
Taylor and used by them to study how to electric
current collected by the pantograph of an electric
locomotive. Generalized pantograph equation is a
special  case  of  delay  differential  equations  that
arise in quite different fields of pure and applied 
mathematics such as number theory, dynamical
systems,  probability,  quantum  mechanics  and
electro-dynamics, population dynamics, infectious
diseases,  physiological  and  pharmaceutical  kinetics 
and  chemical  kinetics, the navigational control of 
ships and aircraft and control problems and electronic 
systems [2-18].

The generalized pantograph equation is given in 
the following form [9-18]:

J m 1
(m) (k)

jk j j
j=0k=0

u (x)= p (x)u ( x ) f(x)
−

α +β +∑∑ (1)

with the initial conditions: 

(i)
iu (0)= , i = 0 , 1 , ,m 1λ − (2)

where pjk(x) and ƒ(x) are analytical functions; cik, λi, αj

and βj are real or complex constants.
Several numerical schemes have been developed 

for solving pantograph equations of the retarded and 
advanced type. The most important one are collocation
method [10], spline methods [11], Runge-Kutta
methods [12], θ-methods [13], Adomian decomposition 
method (ADM) [14], Taylor method [16], variational
iteration method (VIM) [17] and homotopy perturbation 
method (HPM) [18].

Out of the above methods we are interested to 
solve this equation by a proposed method, because this 
method of solution produces an approximate solution in 
a few terms and is easy to implement.

The organization of this paper is as follows.
Section 2 is devoted to introduce the mathematical 
preliminaries of proposed method and then we
transform the obtained approximate polynomial to Padé 
approximate series. In Section 3, some linear and
nonlinear illustrative experiments are included to
demonstrate the validity and applicability of the
presented technique. A brief conclusion is given in 
Section 4.
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THE PROPOSED ALGORITHM

Consider the generalized pantograph equation
given by equation (1). The structure of the proposed 
algorithm is as follows.

In the first step, by m times integrating from both 
sides of equation (1), we convert the differential
equation (1) to a integral equation as follows: 

m 1
i

i
i=0

J m 1x x x (k) m
jk j j

0 0 0 j=0k=0

u(x) x

= p (t)u ( t ) f(t) dt

−

−

− λ

 
 α + β +
 
 

∑

∑∑∫ ∫ ∫

(3)

Now, assumed that 

m 1 i
0 ii=0

u = x = (x)
−
λ µ∑

and the approximate solution is 

1 0u ( x ) = u ex= (x) ex+ µ + (4)

where e is a coefficient which is obtained as follows.
We substitute (4) in (3), then we have: 

x x

0 0
(k)J m 1x j j m

jk
0 j jj=0k=0

(x) e x =

( t )
p (t) f(t) dt

e( t )

−

µ +

 µ α + β  +  + α +β    

∫ ∫

∑∑∫

(5)

Since, the functions pjk(t) and ƒ(t) are assumed to 
be analytical functions therefore we can approximate 
them by suitable polynomials. Hence, the left right 
hands of (5) convert to a polynomial. Comparing the 
both sides of this equation and neglecting the higher 
order terms, the unknown e is obtained. Let us suppose 
that e = u1. Thus, we have the following approximation
of order one, 

1 1u ( x ) = (x) u xµ +

In next step, we assume that new approximate
solution is 

2
2 1u (x)= (x) u x exµ + +

In the same way and neglecting of higher order 
terms (here O(x3)), the value of e will be obtained.
Repeating   the   above  procedure  for  aforementioned 

terms and higher terms, we can get the arbitrary order 
power series of the solutions for equation (3) as 

2 n
n 1 2 nu (x)= (x) u x u x u xµ + + + +  (6)

Also, the power series given by the above
procedure can be transformed into Padé series, easily.

Generally, Suppose that the power series
i

ii=0
a x

∞∑ , represents a function ƒ(x), so that 

i
i

i=0

f ( x ) = a x
∞

∑ (7)

A Padé approximate is a rational fraction 

L
0 1 L

M
0 1 M

p p x p x
[L/M]=

q q x q x
+ + +

+ + +




(8)

which has a Maclaurin expansion which agrees with (7) 
as far as possible. Notice that in (8) there are L+1
numerator coefficients and M+1 denominator
coefficients. There is a more or less irrelevant common 
factor between them and for definiteness we take q0 = 
1. This choice turns out to be an essential part of the 
precise definition and (8) is our conventional notation 
with this choice for q0. So there are L+1 independent 
numerator coefficients and M independent denominator 
coefficients, making L+M+1 unknown coefficients in 
all. These numbers suggest that normally the [L/M] 
ought to fit the power series (7) through the orders 1,x, 
x2,…,xL+M in the notation of formal power series, 

n L
i L M 10 1 L

i M
0 1 Mi=0

p p x p x
a x = O(x )

q q x q x
+ ++ + +

+
+ + +∑ 


(9)

Multiply the both side of (9) by the denominator of 
right side in (9) and compare the coefficients of both 
sides in (9), we have: 

M

l l k k l
k=1

a a q = p , l = 0 , 1 , ,M−+∑ 

L

l l k k
k=1

a a q = 0 , l = M 1, , M L−+ + +∑  (10)

Solving  the  linear   equation   in   (10), we have 
qk,  k = 1,…,L and substituting qk into (10), we obtain 
p1  for  all l = 0,…, M; such as [19]. Therefore, we have
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constructed a [L/M] Padé approximation, which agrees 

with i
ii=0

a x
∞∑  through order xL+M. If M≤L≤M+2,

where M and L are the degree of numerator and
denominator in Padé series, respectively, then Padé
series gives an A-stable formula for an ODE [20].

ILLUSTRATIVE NUMERICAL EXPERIMENTS

In this section, five experiments of generalized
pantograph equations are given to illustrate the
efficiency of the method. The computations associated 
with the experiments discussed above were performed 
in Maple 14 on a PC with a CPU of 2.4 GHz.

Experiment 3.1: Consider the following pantograph 
equation [14, 17] 

x
21 x 1

u ( x ) = e u u(x), 0 x 1
2 2 2

u(0)=1

 ′ + ≤ ≤ 
 

The exact solution u(x) = ex.
We have solved this problem using the proposed 

method. The sequence of approximate solution is
obtained as follows: 

0n = 0 : u ( x ) = 1

1n = 1 : u ( x ) = 1 x+

2

2
x

n = 2 : u (x )= 1 x
2

+ +

2 3

3
x x

n = 3 : u ( x ) = 1 x
2 6

+ + +

2 3 4

4
x x x

n = 4 : u ( x ) = 1 x
2 6 24

+ + + +

 

and so on. 
Thus, we obtain: 

2 3 4 n

n
x x x x

u (x )= 1 x
2! 3! 4! n!

+ + + + + +

This has the closed form u(x) = ex, which is the 
exact solution of the problem. 

Experiment 3.2: Consider the following nonlinear
pantograph equation of first-order [14, 18]:

2 x
u ( x ) = 1 2u , 0 x 1

2
u ( 0 ) = 0

 ′ − ≤ ≤ 
 

which has the exact solution u(x) = sinx.
We have solved this problem using the proposed 

method. The sequence of approximate solution is
obtained as follows: 

0n = 0 : u ( x ) = 0

1n = 1 : u ( x ) = x

2n = 2 : u ( x ) = x
3

3
x

n = 3 : u ( x ) = x
6

−

3

4
x

n = 4 : u ( x ) = x
6

−

3 5

5
x x

n = 5 : u ( x ) = x
6 120

− +

3 5

6
x x

n = 6 : u ( x ) = x
6 120

− +

 

and so on.
Thus, we obtain:

3 5 2n 1
n

2n 1
x x x

u ( x ) = x ( 1)
3! 5! (2n 1)!

+

+ − + + + −
+



This convergent series solution has the closed form 
u(x) = sinx, which is the exact solution of the problem.

Experiment 3.3: Consider the following pantograph 
equation of second order [16, 17]:

23 x
u ( x ) = u(x) u x 2, 0 x 1

4 2
u (0 )= u (0 )= 0

 ′′ + − + ≤ ≤ 
 

′

The exact solution is u(x) = x2. We have solved this 
problem using the proposed method. The sequence of 
approximate solution is obtained as follows: 

0n = 0 : u ( x ) = 0

1n = 1 : u ( x ) = 0
2

2n = 2 : u ( x ) = x
2

3n = 3 : u ( x ) = x
2

4n = 4 : u ( x ) = x

 

and so on. 
Therefore,  the  exact  solution  of  the  problem 

u(x) = x2 is obtained just in three terms.
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Experiment 3.4: Consider the pantograph equation of 
third order [14, 16, 17]

x 0.3u (x )= u(x) u(x 0.3) e , 0 x 1
u(0)=1 u (0)= 1, u (0)=1

− +′′′ − − − + ≤ ≤
′ ′′−

The exact solution of this problem is e-x.
We have solved this problem using the proposed 

method. The sequence of approximate solution is
obtained as follows: 

0n = 0 : u ( x ) = 1

1n = 1 : u ( x ) = 1 x−
2

2
x

n = 2 : u ( x ) = 1 x
2

− +

2 3

3
x x

n = 3 : u ( x ) = 1 x
2 6

− + −

 

and so on.
Thus, we obtain: 

2 3 n
n

n
x x x

u (x )= 1 x ( 1)
2! 3! n!

− + − + + −

This has the closed form u(x) = e-x,  which is the 
exact solution of the problem.

Experiment 3.5: Consider the following nonlinear
pantograph equation: 

2 2 2 2x x
u ( x ) =u cos x u (x)sin u(x), 0 x 1

2 2
u(0)=1, u( 0)=0 , u (0)= 1

   ′′′ ′ ′− − ≤ ≤   
   
′ ′′ −

The exact solution u(x) = cosx.
We have solved this problem using the proposed 

method. The sequence of approximate solution is
obtained as follows: 

0n = 0 : u ( x ) = 1

1n = 1 : u ( x ) = 1
2

2
x

n = 2 : u ( x ) = 1
2

−

2

3
x

n = 3 : u ( x ) = 1
2

−

2 4

4
x x

n = 4 : u ( x ) = 1
2 24

− +

2 4

5
x x

n = 5 : u ( x ) = 1
2 24

− +

 

and so on.
Thus, we obtain: 

2 4 2n
n

2n 1
x x x

u (x)=1 ( 1)
2! 4! (2n)!+ − + + + −

This convergent series solution has the closed form 
u(x) = cosx, which is the exact solution of the problem.

CONCLUSION

In the present paper, an efficient algorithm was 
proposed for solving generalized pantograph equation. 
The main idea of the proposed algorithm is to convert 
the problem including linear and nonlinear terms to 
Padé series. Furthermore, this method yields the desired 
accuracy only in a few terms and in a series form of the 
exact solution. The method is also quite straightforward 
to write computer code. These facts motivate us to 
consider the presented algorithm to solve generalized
pantograph equations as a valid and powerful tool.
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