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INTRODUCTION

Differential-Difference Equations (DDEs) arise in 
many areas of various mathematical modeling. For
instance; infectious diseases, population dynamics,
physiological and pharmaceutical kinetics and chemical 
kinetics, the navigational control of ships and aircrafts 
and control problems. There are many books on the 
application of DDEs which we can point out to the 
books of Driver [1], Gopalsamy [2], Halanay [3],
Kolmanovskii and Myshkis [4], Kolmanovskii and
Nosov [5] and Kuang [6]. Some modelers ignore the 
`lag' effect and use an ODE model as a substitute for a 
DDE model. Kuang [6] comments under the heading 
``Small Delay Can Have Large Effects" , on the dangers 
that researchers risk if they ignore lags which they think 
are small; see also El'sgol'ts and Norkin [7]. Other
modelers replace a scalar DDE by a system of ODE in 
an attempt to simulate phenomena more appropriately 
modeled by DDEs. There are inherit qualitative
differences between DDEs and finite systems of ODEs 
that make such a strategy risky. Hence, it is bettered to 
discuss about the DDEs independently and try not to 
enter the issue of ODEs in the problem which it is a 
complete DDE problem. Many different methods have 
been  presented  for  numerical  solution  of  DDEs. 
Among these are the Radau IIA method [8], Bellman's 
method of steps [9], waveform relaxation method [10], 
Runge-Kutta method and continuous Runge-Kutta
method [11, 12].

In the last two decades, the use of RBFs for both 
interpolation and for solving mathematical problems 

have received considerable attention in various fields of 
research and attracted many researchers to solve the 
problems in higher-dimensional spaces. Because the 
RBFs as a class of mesh-free schemes avoid grid 
generation and the domain of interest can be considered 
by a set of scattered data points among which there is 
no  pre-defined  connectivity. This method of solution 
is effective on scattered data points and in irregular 
geometries, is easy to implement in any finite
dimension and is spectrally accurate.

The MQ approximation scheme is an important and 
an useful method using RBFs for the numerical solution 
of ordinary and Partial Differential Equations (ODEs 
and PDEs). It is a grid-free spatial approximation
scheme which converges exponentially for the spatial 
terms of ODEs and PDEs. The MQ approximation
scheme was first introduced by Hardy [13] who
successfully applied this method for approximating
surface and bodies from field data. Hardy [14] has 
written a detailed review article summarizing its
explosive growth in use since it was first introduced. In 
1972, Franke [15] published a detailed comparison of 
29 different scattered data schemes against analytic
problems. Of all the techniques tested, he concluded 
that MQ performed the best in accuracy, visual appeal 
and ease of implementation, even against various finite 
element schemes.

The organization of this paper is as follows.
Section 2 is devoted to introduce the MQ
approximation scheme and its preliminary concepts. In 
Section 3, we apply the MQ approximation scheme to 
DDEs.  In Section 4, we consider the error estimation of 
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the method. In Section 5, the consequences of the
numerical results is shown. Finally, Section 7 consists 
of some obtained conclusions. 

MQ APPROXIMATION SCHEME

The basic MQ approximation scheme assumes that 
any function can be expanded as a finite series of upper 
hyperboloids,

N
d

j j
j=1

u(t)= u (t t ), t Rφ − ∈∑ (1)

where N is the total number of data centers under
consideration and 

( )
1

2 2 2j j(t t ) = (t t ) R , j=1,2, , Nφ − − + 

(t-tj)2 is the square of Euclidean distance in Rd and R2>0
is an input shape parameter. Note that, the basis
function φ is continuously differentiable and is a type of 
spline approximation.

The expansion coefficients uj are found by solving 
a set of full linear equations, 

N

i j i j
j=1

u ( t ) = u (t t ), i = 1 , 2 , , Nφ −∑  (2)

Zerroukut et al. [16] found that a constant shape 
parameter (R2) has achieved a better accuracy. Mai-Duy
and Tran-Cong [17] have developed new methods
based on Radial Basis Function Networks (RBFN) for 
the approximation of both functions and their first and 
higher derivatives. The so called direct RBFN
(DRBFN) and indirect RBFN (IRBFN) methods where 
studied and it was found that the IRBFN methods yields 
consistently better results for both functions and
derivatives. Recently, Aminataei and Mazarei [18]
stated that, in the numerical solution of elliptic PDEs 
using direct and indirect RBFN methods, the IRBFN 
method is very accurate than other methods and the 
error is very small. They have shown that, especially, 
on one dimensional equations, IRBFN method is more 
accurate than DRBFN method.

Micchelli [19] proved that MQ belongs to a class 
of conditionally positive definite RBFN. He showed 
that the equation (2) is always solvable for distinct 
points. Madych and Nelson [20] proved that the MQ 
interpolation always produces a minimal semi-norm
error and that the MQ interpolant and derivative
estimates converge exponentially as the density of data 
centers increases.

In contrast, the MQ interpolant is continuously 
differentiable over the entire domain of data centers and 
the spatial derivative approximations were found to be 
excellent, most especially in very steep gradient regions 
where traditional methods fail. This excellent ability to 
approximate spatial derivatives is due in large part by a 
slight modification of the original MQ scheme by
permitting the shape parameter to vary with the basis 
function.

Instead of using the expansion in equation (1), we 
have used from [21-23] as the following: 

N
d

j j
j=1

u(t)= u (t t ), t Rφ − ∈∑ (3)

where

( )
1

2 2 2j j j(t t ) = (t t ) R , j = 1 , 2 , , Nφ − − +  (4)
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and
2
minR > 0

2
maxR  and 2

minR  are two input parameters chosen so 
that the ratio 

2
6max

2
min

R
10 to 10

R
≅

Madych [24] proved that under circumstances very
large values of a shape parameter are desirable. The 
adhoc formula in equation (4) is a way to have at least 
one very large value of a shape parameter without 
incurring the onset of severe ill-conditioning problems.
 Spatial partial derivatives of any function are formed 
by differentiating the spatial basis functions. Consider a 
one dimensional problem. The first derivative is given 
by simple differentiation: 

N
j i j

i
ijj=1

u ( t t )
u ( t ) =

−
′

φ∑
where

1
2 2 2ij i j j=((t t ) R ) , i=1,2, , Nφ − + 

NUMERICAL SOLUTION OF DDES

In  this  section, we are interested to solve DDEs 
by   the   MQ    approximation   scheme    mentioned  in
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section 2. For instance, let us consider the following 
DDE on [0,tj],

u(t)=f(t,u(t) ,u(t (t,u(t))),u(t (t,u(t))))′ ′− τ − σ (5)

subject to 
u(t)= (t), t 0ψ ≤

where ƒ: [0,Rƒ]×R3→R is a smooth function, τ(t,u(t))
and σ(t,u(t)) are non-negative continuous functions on 
[0,tƒ]×R such that 0≤t-τ(t,u(t))≤tƒ and 0≤t-σ(t,u(t))≤tƒ.
Also ψ(t) represents the initial function or the initial 
data points.

For the solution of equation (5), it is sufficient to 
suppose that approximate solution is 

N

j j f
j=1

u(t)= u (t t ), 0 t tφ − ≤ ≤∑ (6)

Choosing ti, i = 1,2,…,N, as collocating points, we 
have:

N

i j i j
j=1

u ( t ) = u (t t )φ −∑ (7)

N
j i j

i
ijj=1

u (t t )
u ( t ) = , i = 1 , 2 , , N

−
′

φ∑  (8)

also, for i = 1,2,…,N,

N N

i i i j i i j i j j
j=1 j=1

u(t (t , u ( t ) ) ) = u (t ( t , u (t t )) t )− τ φ − τ φ − −∑ ∑ (9)

N

j i i j i j jN
j=1

i i i (1)
ijj=1

u ( t ( t , u (t t )) t )

u ( t (t , u ( t ) ) ) =

−σ φ − −

′ −σ
φ

∑
∑ (10)

where

(1)
i i i jij

1N
2 2 2i i j i j j j

j=1

= (t ( t , u ( t ) ) t )

=( ( t (t , u (t t )) t ) R )

φ φ − σ −

−σ φ − − +∑
(11)

Substituting (7), (8), (9) and (10) in (5) and
imposing the supplementary condition (u(0) = ψ(0)) to 
the problem, we gain N-1 equations of differential
forms   and   initial   condition   produce   one  equation. 
Hence,  the  system  of N equations with N unknowns is 

available. Then we must solve this system to distinct 
the unknown coefficients. Hence, we have used the 
Gauss elimination method with total pivoting to solve 
such a system. Similarly, we can do the way in above 
for other classes of DDEs.

The best fit for approximate solution to exact
solution u(t) can be studied by the role of the parameter 

2
jR  in the multiquadric approximation scheme using the 

two parameter optimization procedure developed by 
Marquardt [25]. It is noteworthy that collocating points 
can be scattered. This is the main difference between 
this method of solution and other methods. In Section 2, 
the numerical results demonstrate this issue, easily and 
the efficiency of MQ approximation scheme in this 
sense, is observable.

Note: As shown by the numerical results in Section 2, 
MQ approximation scheme benefits from the following 
advantages:

i. Being easy to implement.
ii. Being independent of collocating points in large 

scales.
iii. Being well-applicable for the collocating points 

which have a very small metric.
iv. Requiring the minimum number of data points in 

the required domain.

It should be noted that the computations associated 
with the experiments discussed above were performed 
by using Maple 13.

NUMERICAL EXPERIMENTS

In this part, we present some experiments in-which
their numerical solutions illustrate the high accuracy 
and efficiency of MQ approximation scheme.

Experiment 4.1: Consider the following DDE, 

2 3
3 t t 3t 8t

u( t ) u(t) u ( ) u( ) = 2 t , t [0,2]
3 2 4 27

u(t)=0, t 0

′ ′+ + − + + ∈

≤

The exact solution is u(t) = t2.
For Rmax = 1950, Rmin = 150.26 and N = 6, we have 

the Table 1 which illustrate the efficiency and accuracy 
of MQ approximation scheme.

Table 1 shows the high agreement between exact 
solution and approximate solution.

In the following, we have presented an almost 
complicated experiment which its numerical results
shows  that,  in  spite  of complexity of problem, in MQ
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Table 1:

xi MQ approximate solution Exact solution

0.0 0.00000000 0.00000000
0.4 0.16000000 0.16000000
0.8 0.64000000 0.64000000
1.2 1.44000000 1.44000000
1.6 2.56000000 2.56000000
2.0 4.00000000 4.00000000

Table 2:
Rmax = 20 Rmax = 30 Rmax = 40

 t i Rmin = 1.7 Rmin = 1.3 Rmin = 1.1
 0 1.00000002 1.00000001 1.00000001

10e
π 89085576 0.89085576 0.89085577

5e
π 0.79362401 0.79362400 0.79362400

3
10e
π 0.70700452 0.70700453 0.70700453

2
5e
π 0.62983906 0.62983906 0.62983906

2e
π 0.56109578 0.56109577 0.56109577

3
5e
π 0.499855540 0.49985540 0.49985540

7
10e
π 0.44529909 0.44529908 0.44529907

4
5e
π 0.396697726 0.39669725 0.39669725

9
10e
π 0.35340005 0.35340004 0.35340003

e
π 0.31482847 0.31482846 0.31482846

method, data points can be scattered. Therefore this 
method is not depend on the selection of points. Here, 
also we observe the high efficiency and accuracy of this 
method, too.

Experiment 4.2: Consider the following DDE, 

t 2

2t sin(t ) sin(t) t

t

u( t ) e u ( t sin(t )) cos(t)u(t sin(t))=

e e cos(t)e , 0 t
e

u( t )=e , t 0

− −

−

′ ′+ − + −
π− − + ≤ ≤

≤

without precise solution.
By choosing N = 11 and various parameters of 

Rmax and Rmin, we have the Table 2 for MQ approximate 
solution.

In next experiment, we show that some scattered
data points are even though very closely to each other 
but this method of solution does not sensitive in this 
regard.

Table 3:

t i MQ approximate solutions Exact solution

0.001 1.001000501 1.001000500
0.002 1.002002002 1.002002001
0.200 1.221402757 1.221402758
0.280 1.323129811 1.323129812

0.340 1.404947591 1.404947590
0.410 1.506817786 1.506817785
0.470 1.599994198 1.599994198
0.550 1.733253017 1.733253017
0.640 1.896480879 1.896480879
0.690 1.993715533 1.993715533
0.760 2.138276221 2.138276220

0.998 2.712850696 2.712850697
0.999 2.715564903 2.715564905
1.000 2.718281826 2.718281828

Experiment 4.3: Consider the following DDE, 

2
0 1 2 3

t 2t t sin(t)20 1 2 3
t

t
p u ( t ) p u ( ) p u(t ) p y(sin(t))=

2

p e p e p e p e , 0 t 1

u ( t ) = e , t 0

′ + + +

+ + + ≤ ≤

≤

where
t

0 1 2 3p = e sin(t),p = cos(t),p = t , p =1+

and exact solution is u(t) = et. Choosing Rmax = 120,
Rmin = 0.499 and N = 15, the following results for
scattered data are obtained. 

This experiment shows that this method of solution 
is also well-applicable for the first three and the last 
three collocating points which have a very small metric.

CONCLUSIONS

In the present paper, a MQ approximation scheme 
is proposed to solve differential difference equations. 
The results reveal that the technique introduced here is 
effective and convenient in solving differential
difference equations because this method is easy to 
implement and yields the desired accuracy with only a 
few terms. Other advantages of the present method are, 
a minimal number of data points in the required domain 
and its applicability to scattered collocated points with a 
very small metric. All of these advantages of the MQ 
approximation scheme suggest that the method is a fast 
and powerful tool that is more convenient for computer 
algorithms.
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