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An Optimally Convergent Three-step Class of Derivative-free Methods

F. Soleymani

Department of Mathematics, Islamic Azad University, Zahedan Branch, Zahedan, Iran

Abstract: In this paper, a new optimally convergent eighth-order class of three-step without memory 
methods is suggested. We here pursue derivative-free algorithms, i.e., algorithms requiring only the ability 
to evaluate the (objective) function. Since the types of problems that these algorithms can solve are 
extremely diverse in nature. The analysis of convergence shows that each derivative-free method of our 
class requires four pieces of information per full iteration to obtain the optimal efficiency index 1.682. 
Numerical experiments with comparison to some existing derivative-free methods are furnished to support 
the underlying theory.
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INTRODUCTION

For approximating a root α of a nonlinear equation 
f(x) = 0, a variety of high-order two-or three-step multi-
point iterative methods free from second derivatives 
have been developed by Heydari-Hosseini-Loghmani
[3], Sharma-Guha-Sharma [12], Kung-Traub [7],
Soleymani [13], Soleymani [16] and even higher orders 
schemes by Sargolzaei-Soleymani [11] and Geum-Kim
[2]. The efficiency index of these methods is found to 
be high in contrast to the efficiency of one-point
methods. On the other hand, these new methods can be 
extended to solve system of nonlinear equations, see 
e.g. Darvishi [1]. 

To shortly mention on the applications of the topic 
of nonlinear equations solving, we can mention the 
following: the various types of space structures differ in 
their behavior under load and so a different method of 
analysis must be used for each type. Space truss (a 
space frame truss is a three-dimensional framework of 
members pinned at their ends; a tetrahedron shape is the 
simplest space truss, consisting of six members which 
meet at four joints) systems are one of the most popular 
forms of space frames [10] which needs to be solved by 
iterative root solvers. 

Many iterative methods have been offered for
improving Newton-Raphson approach for solving
nonlinear equations. However, many depend on the
second or higher derivatives in the computing process,
which restricts their practical application because of
inherently intensive and extensive nature of the
computation involved. 

In recent years, also there has been some progress 
in devising iterative methods designed to improve
application of the Newton-Raphson method, while at 
the same time, not requiring the computation of second 
derivatives (as mentioned above) [4, 9, 14]. However, 
there are some situations in which the calculation of the 
first derivatives is difficult or even impossible, thus root 
solvers in which there is no need of derivative
calculation per iteration are needed.

Here, we focus on the simple roots of nonlinear 
scalar equations by iterative processes. The prominent 
one-point (or one-step) Newton’s method of order two,
which is a basic tool in numerical analysis has widely 
been discussed in literature [8, 18]. This scheme has 
1.414 as its efficiency index. Newton's iteration and 
any variant of it include derivative-calculation per 
full cycle to proceed, which is not useful in engineering 
problems, mentioned above. To remedy this, first
Steffensen coined the follow-up quadratically
method [19]
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Inspired by this method, so many derivative-free
techniques with better orders of convergence have been 
provided through two-or three-step cycles. In between, 
the concept of optimality, which was mooted by 
Kung-Traub [7] plays a crucial role; a multi-point
method for solving nonlinear scalar equations without 
memory has the optimal order 2(n-1)/n, where n is the
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total number of evaluations per full cycle. In what 
follows, we shortly give some of the high-order
methods in which no derivative-evaluation per iteration 
is needed.

Khattri and Argyros in [6] formulated a sixth-order
method as follows
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Soleymani and Hosseinabadi in [15] suggested
another sixth-order variant of Steffensen's technique as 
comes next
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where f[xn,wn] is the divided difference of f(xn), and

n n nf ( w ) f(x f ( x ))= +

and could be given by 
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Kung and Traub gave the following family of one-
parameter methods by using inverse interpolation for
annihilating the new-appeared first derivatives of the 
function in the Steffensen-Newton-Newton structure
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with β∈R-{0}.
In this work, we suggest a new class of three-step

derivative-free methods consuming four pieces of
information per full cycle to reach the optimal order of 
convergence eight. Clearly, the index of efficiency for 
our class is 1.682. Some numerical examples are also 
given to support the underlying theory developed in this 
paper. From the results displayed in Tables 3-6 and a 
number of numerical experiments, it will be concluded 
that the proposed multipoint class in this work is
competitive with existing three-point methods of
optimal order eight and possesses very fast convergence 
for good initial approximations, while it is completely 
free from derivative.

A NEW CLASS OF METHODS

In order to construct an optimal class of methods
without computation of derivatives, we should consider 
a three steps cycle in which the first step is (1) and the 
second step provides the fourth-order convergence with 
only three evaluations and the Newton's method at the 
end. Here, we consider the second step of our cycle by 
a similar fourth-order derivative-free method of Khattri 
and Agarwal [5] and suggest the following iteration
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where wn = xn+f(xn). In the structure (6), f′(zn) should 
be annihilated as the order (eight) does not fall down. 
To do this, we first approximate it by the linear
combination of the past two points xn and yn, i.e. 
f′(zn)≈f[xn,yn]. Then, we make use of weight function 
approach to reach the convergence order eight with 
only four pieces of information per full cycle. Thus, we 
sugges t
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t , , , ,
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(7) arrives at eighth order of convergence.

Theorem 1: Let α∈D, be a simple zero of a sufficiently differentiable function f : D R R⊆ → and let that cj = 
f(j)(α)/j!, j≥1, β∈R-{0}. If x0 is sufficiently close to α, then, (i): the order of convergence of the solution by the 
without memory derivative-free class defined in (7) is eight, when
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and (ii): this solution reads the error equation
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Proof: We simply provide the order of convergence by expanding Taylor's series around the simple root for the 
iteration function in the nth iterate. We seek this problem with the following Mathematica program (Matlab and 
Maple are also convenient). The following terms are used in the program given below.

e x ,u y ,v z ,b x f(x)= − α = − α = −α = +β

1q ,fx f(x),fy f(y)= β = =

[ ]fz f(z),d f x,w= =

Mathematica Program

(*e=x-a;*)fx[e_]=c1*e+c2*e^2+c3*e^3+c4*e^4+c5*e^5+c6*e^6+c7*e^7+c8*e^8;
b=e+q1*fx[e];fw[b_]=c1*b+c2*b^2+c3*b^3+c4*b^4+c5*b^5+c6*b^6+c7*b^7+c8*b^8;d=(fw[b]-fx[e])/
(q1*fx[e]);(*u=y-a;*)u=e-Series[fx[e]/d,{e,0,8}];fy[u_]=c1*u
+c2*u^2+c3*u^3+c4*u^4+c5*u^5+c6*u^6+c7*u^7+c8*u^8;(*v=z-a;*)v=u(fy[u]
/d)*(1+fy[u]/fx[e]+fy[u]/fw[b]);fz[v_]=c1*v+c2*v^2+c3*v^3+c4*v^4+c5*v^5
+c6*v^6+c7*v^7+c8*v^8;G[0]=G'[0]=P'[0]=H'[0]=1;H[0]=K[0]=L[0]=L'[0]=P[0]=P''[0]=0;L''[0]=-
2;K'[0]=2;L'''[0]=0;
P'''[0]=-(30+6*q1*d*(8+q1*d*(5+q1*d)));e[n+1]=v-(fz[v]/((fy[u]-fx[e])/(u-e)))*(G[fz[v]/fx[e]]
+H[fz[v]/fy[u]]+K[fz[v]/fw[b]]+L[fy[u]/fx[e]]+P[fy[u]/fw[b]])//FullSimplify

Clearly, by considering (8), the order of the scheme (7) arrives at eight with only four evaluations per full cycle. 
Thus, the proof is complete.
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In terms of computational efficiency, each method of our class (7)-(8) possesses 1.682 as its efficiency index 
which is the same to (4) and greater than 1.565 of (2) and (3) and 1.414 of Steffensen's method (1). Some typical
forms of the real valued weight functions G(t), H(τ), K(σ), L(ϕ) and P(π) which satisfy (8) are listed in Table 1. The 
simplest method in terms of arithmetic calculation is given below
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with the following error equation
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As an another example, we can have the following derivative-free eighth-order method from our proposed class 
of without memory iterations
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Table 1: Some typical forms of the real valued weight functions in (8)

Weight function G(t) H(τ) K(σ) L(ϕ) P(π)
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Such classes of methods (7)-(8) in which the
highest possible order has been obtained by the smallest 
use of evaluations per iteration and moreover, no
derivative evaluation is needed per step to proceed, are 
so useful in engineering and optimization problems. An 
example of the use of derivative-free algorithms in 
optimization (Air Pollution) can be the following: an 
application of derivative-free optimization involves
function evaluation by numerical simulation.

The existence of several models for air pollution 
allows the possibility of computing the maximum air 
pollution concentration in a given region. The existent 
models, available both for fixed and mobile sources, 
allow also the planning of the sampling stations
positions (maximizers). The refined models provide a 
more detailed treatment of physical and chemical
processes, but have higher computational costs and the 
available software is usually written in a computer
language where derivatives are not available or are very 
expensive to compute. Thus, the users refer to
derivative-free algorithms, such as (10)-(11).

The informational efficiency is defined as the
quotient of the convergence order of an iteration
function and the informational usage of an iteration 
function (new pieces of information required per
iteration) and denoted as IF. Thus IF = p/n where p is 
the convergence order and n is the whole number of 
evaluations. According to this, the informational
efficiency for each member from our proposed class is 
2 which is much better that 1 of Steffensen's, 1.5 of (2) 
and (3).

NUMERICAL TESTING

The results given in the previous section are
supported through the numerical works. The simple
method of our class (10)-(11) is compared with the
sixth-order scheme of Khattri and Argyros (2), the

sixth-order method of Soleymani and Hosseinabadi (3) 
and the optimal eighth-order derivative-free family
of Kung-Traub (4) with β = 1. All the computations 
reported here were done using MATLAB 7.6, where for 
convergence we have selected that |f(xn)|≤10-5000.
Scientific computations in many branches of science 
and technology demand high degree of numerical
precision. The minimum number of precision digits
chosen as 5000, being large enough to minimize
round-off errors as well as to clearly observe the
computed asymptotic error constants requiring small 
number of divisions. 

The test nonlinear scalar functions are listed in 
Table 2. The results of comparisons for the test
functions are provided in Tables 3-6. It can be seen that 
the resulted method from our class is accurate and 
efficient in terms of number of accurate decimal places 
to find the roots after each iteration. In terms of
computational cost, our class is much better than the 
compared methods. The class includes four evaluations 
of the function per full iteration to reach the efficiency
index 1.682.

Under the same order of convergence, one should
note that the speed of local convergence of |xn-α| is
dependent on cj, namely f(x) and α. In general,
computational accuracy strongly depends on the
structures of the iterative methods, the sought zeros and 
the test functions as well as good starting points. One 
should be aware that no iterative method always shows 
best accuracy for all the nonlinear functions. Each 
initial guess x0 close to a was used not only to mostly 
guarantee the convergence but also to observe the 
asymptotic error constants as well as the convergence 
order. Note that more experimental results for our class 
show that for small positive value of β∈R-{0}, the
numerical results will be more promising and the output 
error equation will be confined as well.

Table 2: The examples considered in this study
Test functions Zeros Guess

3 2
1

x 2(9 2 7 3)f (1 x)cos( ) 1 x
2 27
π += + + − − 1 1 / 3α = 0.8

2 2
2f (sinx) x 1= − + 2 1.404491648215341α ≈ 2.0

1 2
3

xf sin (x 1) 1
2

−= − − + 3 0.594810968398369α ≈ 0.3

1 2 1
4

xf sin (x 1) tan (x) 1
2

− −= − − + + 4 0.300980060061363α ≈ 0.5

Table 3: Convergence study for the test function f1

Methods |f1(x1)| |f1(x2)| |f1(x3)| |f1(x4)|
(2) 0.1 0.1e-2 0.3e-13 0.3e-77
(3) 0.2e-1 0.9e-11 0.1e-66 0.2e-402
(4) 0.9e-1 0.9e-14 0.2e-113 0.1e-910
(10) 0.1e-3 0.5e-31 0.1e-249 0.8e-1997
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Table 4: Convergence study for the test function f2

Methods |f2(x1)| |f2(x2)| |f2(x3)| |f2(x4)|
(2) 0.8e-1 0.1e-5 0.8e-34 0.2e-203
(3) Div. - - -
(4) Div. - - -
(10) 0.3 0.8e-6 0.1e-50 0.1e-407

Table 5: Convergence study for the test function f3

Methods |f3(x1)| |f3(x2)| |f3(x3)| |f3(x4)|
(2) 0.1e-8 0.1e-56 0.1e-344 0.1e-2072
(3) 0.2e-5 0.2e-35 0.2e-215 0.5e-1295
(4) 0.1e-6 0.9e-58 0.3e-466 0.5e-3734
(10) 0.1e-7 0.1e-64 0.7e-520 0.5e-4163

Table 6: Convergence study for the test function f4

Methods |f4(x1)| |f4(x2)| |f4(x3)| |f4(x4)|
(2) 0.2e-8 0.1e-56 0.1e-346 0.7e-2086
(3) 0.1e-8 0.2e-57 0.8e-350 0.2e-2104
(4) 0.2e-8 0.1e-72 0.2e-588 0.4e-4713
(10) 0.1e-8 0.2e-75 0.7e-609 0.2e-4877

CONCLUSION

It is widely known that many problems in different 
scientific fields of study are reduced to solve single 
valued nonlinear equations. On the other hand, the
construction of iterative without memory methods for 
approximating the solution of nonlinear equations or 
systems is an interesting task in numerical analysis. 
During the last years, numerous papers, devoted to the 
mentioned iterative methods, have appeared in several 
journals, [17, 18, 20]. The existence of an extensive
literature on these iterative methods reveals that this 
topic is a dynamic branch of the numerical and
nonlinear studies with interesting and promising
applications (the study of dynamical models of
chemical reactors, radioactive transfer, preliminary
orbit determination, etc). For these reasons, we have 
constructed an efficient class of derivative-free without 
memory methods in which there are four function
evaluations per full cycle. Taking into consideration of 
the efficiency index of multi-point iterations, we have
attained that our proposed class possesses 1.682 as its 
index of efficiency which is greater than that of the 
newly published works (2) and (3). The convergence 
rate of the presented contribution was established
theoretically and its performance was tested through 
numerical examples. Our contribution is promising
when the calculation of derivatives of the function takes 
up a great deal of time or impossible. Hence, each 
method of our class is very effective and can be
considered as an alternative to the existing methods 
available in literature.
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