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Abstract: For  a   monoid   M,   we  introduce  nil-M-Armendariz  rings,  which  are  generalization  of
nil-Armendariz rings; and we investigate their properties. This article proves that a ring R is nil-M-
Armendariz if and only if for any n, Tn(R) is nil-M-Armendariz. We show that if R is a semicommutative 
and M-Armendariz ring, then R is nil-M×N-Armendariz ring, where N is a u.p.-monoid.
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INTRODUCTION

Throughout this article R denotes an associative 
ring with identity, nil(R) denotes the set of all nilpotent 
elements of R and M denotes a monoid with identity e. 
Rege and Chhawchharia [8] introduced the notion of an 
Armendariz ring. They define a ring R to be an
Armendariz ring if whenever polynomials 

1 m
0 1 mf ( x ) = a a x a x+ + +

1 n
0 1 ng ( x ) = b b x b x R[x]+ + + ∈

satisfy f ( x ) g ( x ) = 0 , then aibj = 0 for each i and j. (The 
converse is always true.) The name Armendariz ring 
was chosen because Armendariz [3] had noted that a 
reduced ring satisfies this condition. Some properties of 
Armendariz rings where given in [1, 3-5, 8]. A monoid 
M is called a u.p.-monoid (unique product monoid) if 
for any two non empty finite subsets A,B⊆M, there 
exists an element g∈M uniquely presented in the form 
ab where a∈A and b∈B. Liu [6] called a ring R M-
Armendariz if whenever elements 1 1 m m= a g a g ,α + +

1 1 n n= b h b h R[M]β + + ∈  satisfy αβ = 0, then aibj = 0 
for all i,j. Which is a generalization of Armendariz
rings. We recall that a ring R is called weak M-
Armendariz ring [9] if whenever elements 

1 1 m m 1 1 n n= a g a g , = b h b h R[M]α + + β + + ∈ 

satisfy αβ = 0, then aibj∈nil(R) for each i and j. Which 
is a generalization of weak Armendariz rings. Recall
that a ring R is said to be nil-Armendariz [2] if

whenever two polynomials f(x),g(x) R[x]∈  satisfy
f(x)g(x) nil(R)[x]∈ , then ab∈nil(R) for all a∈coef
(ƒ(x)) and b∈coef (g(x)), coef (ƒ(x)) denotes the
subsets of R of the coefficients of ƒ(x).

In this article we call a ring R a nil-M-Armendariz
(an nil-Armendariz ring relative to M) if whenever
elements

1 1 m m 1 1 n n= a g a g , = b h b h R[M]α + + β + + ∈ 

satisfy αβ∈nil(R)[M], then aibj∈nil(R) for all i,j.
We prove that M-Armendariz rings are nil-M-

Armendariz. If M = {N∪{0},+}, nil-M-Armendariz
rings are nil-Armendariz.

Also in Proposition 2.12 we give a suitable answer 
to this question that a ring R is nil-M-Armendariz if and 
only if, for any n, Tn(R) is nil-M-Armendariz.
We investigate nil-M-Armendariz properties, also we 
have:

M Armendariz nil M Armendariz,

Armendariz nil Armendariz weak Armendariz

− ⇒ − −

⇒ − ⇒

NIL-M-ARMENDARIZ RING

We will assume that all rings are associative with 
identity. If R is a ring, nil(R) denotes the set of
nilpotent elements in R and M denotes a monoid with 
identity e.

Before stating Proposition 2.2, we need the
following:
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Lemma   2.1:  [6,  Proposition   1.1] Let  M  be  a
u.p.-monoid and R a reduce ring. Then R is M-
Armendariz.

Proposition 2.2: Let R be a ring such that nil(R) R
and M be a u.p-monoid and 

1 1 m m= a g a gα + +

1 1 n n= b h b h R[M]β + + ∈

Then if nil(R)[M]αβ∈ , i ja b nil(R)∈  for all i,j.

Proof: Observe that R
nil(R)

 is reduced, since M is a 

u.p-monoid, hence by Lemma 2.1, we have give R
nil(R)

is M-Armendariz. Suppose nil(R)[M]αβ∈ . Then if we 
denote by ,α β the corresponding elements in

R
[M]

nil(R)
, = 0αβ . Since R

nil(R)
 is M-Armendariz, so 

i ja b = 0  for each i,j. Hence, i ja b nil(R)∈  for all i,j.

Definition 2.3: [9] A ring R is said to be weak M-
Armendariz if whenever elements 

1 1 m m 1 1 n n= a g a g , = b h b h R[M]α + + β + + ∈ 

satisfy αβ = 0, then i ja b nil(R)∈  for each i and j.
Clearly, M-Armendariz rings are weak M-

Armendariz. We now present here a stronger condition, 
given by the property obtained in Proposition 2.2.

Definition 2.4: A ring R is said to be nil-M-Armendariz
if whenever elements 

1 1 m m 1 1 n n= a g a g , = b h b h R[M]α + + β + + ∈ 

satisfy nil(R)[M]αβ∈ , then i ja b nil(R)∈ for each i and j.
We recall a ring R is called semicommutative if for 

all a,b∈R, ab = 0 implies aRb = 0.

Lemma 2.5: [7, Lemma 3.1] Let R be a
semicommutative ring. Then nil(R) is an ideal of R. By
Proposition 2.2 and Lemma 2.5 we have:

Corollary 2.6: Let M be a u.p.-monoid and R a
semicommutative ring. Then R is nil-M-Armendariz
ring. Recall that if I⊆nil(R), then 

R nil(R)
nil( ) =

I I

We observe that if M be a u.p.-monoid, then by 
Proposition 2.2, R is nil-M-Armendariz. More generally 
we obtain the following.

Proposition 2.7: Let R be a ring and I R  a nil ideal 
and M be a monoid. Then R is nil-M-Armendariz if and 
only if R/I is nil-M-Armendariz.

Proof: We denote R
R =

I
. Since I is nil, then

nil(R)=nil(R) . Hence nil(R)[M]αβ∈ if and only if
nil(R)[M]αβ∈ . If a∈coef (α) and b∈coef(β), then
nil(R)αβ∈  if and only if a b nil(R)∈ .

Therefore R is nil-M-Armendariz if and only if R
is nil-M-Armendariz.

Before stating Proposition 2.9, we need the
following:

Lemma 2.8: Let R be a nil-M-Armendariz ring and 
n≥2. If 1 2 n, , , R[M]α α α ∈  such that 1 2 nα α α ∈ nil

(R)[M], then if ak∈coef (αk) for k = 1,…,n, we have 
1 2 na a a ∈ nil (R).

Proof: We use induction on n. The case n = 2 is clear 
by definition of nil-M-Armendariz ring. 

Suppose n>2. Consider 1 2 n 1h = −α α α . Then

nhα ∈nil(R)[M], since R is nil-M-Armendariz

h na a ∈ nil(R) where ah∈coef (h) and an∈coef (αn).

Therefore, for all an∈coef (αn),

1 n 2 n 1 n n( a ) = h a nil(R)[M]− −α α α ∈

and by induction, since the coefficients of n 1 na−α  are 

n 1 na a−  where an-1 is a coefficient of αn-1, we obtain 

1 2 n 1 na a a a− ∈ nil(R) for ak∈coef (αk), k = 1,…,n. 

Proposition 2.9: If R is nil-M-Armendariz, then
nil(R[M]) nil(R)[M]⊆ .

Proof: Suppose nil(R)[M]α ∈  and αm = 0. By Lemma 
2.8, we have that 1 ma a nil(R)∈  where ai is a

coefficient of α for i = 1,…,m. In particular, for every 
a∈coef(α), am is nilpotent. Therefore nil(R)α ∈  for all 
a∈coef(α) and hence nil(R)[M]α ∈ .

Before stating Proposition 2.11, we need the
following:
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Lemma 2.10: Let R be a nil-M-Armendariz ring.

(a) If a,b are nilpotent, then ab is nilpotent.
(b) If a,b,c are nilpotent, then (a+b)c and c(a+b) are 

nilpotent.
(c) If a,b,c are nilpotent, then a+bc is nilpotent.
(d) If a,b are nilpotent, then a-b is nilpotent.

Proof: (a) Suppose a,b are nilpotent and bm = 0. Then 

2 2 m 1 m 1(ae abg)(1e bg b g b g ) = a e nil(R)[M]− −− + + + + ∈

Since R is nil-M-Armendariz, hence ab nil(R)∈ .

(b) Suppose a,b,c are nilpotent, so an = bm = 0 for some 
positive integer m, n. Then 

n 1 n 1

m 1 m 1

(1e a g )(1e ag)(1e bg)
(1e b g )ce=ce

− −

− −

+ + − −

+ +





It we multiply the elements in the middle, we obtain 

n 1 n 1 2

m 1 m 1

(1e a g )(1e (a b)g abg )
(1e b g )ce=ce

− −

− −

+ + − + +

+ +





Now, since R is nil-M-Armendariz and
ce nil(R)[M]∈ , by Lemma 2.8, we can choose the
appropriate coefficients from each element of R[M] to 
obtain (a b)c nil(R)+ ∈ . Similarly we see that
c(a b) nil(R)+ ∈ .

(c) Suppose a,b,c are nilpotent. By (a), bc is nilpotent 
and by (b), b(a+bc) is also nilpotent. Hence

2(1e bg)(ce (a bc)g) ce ag b(a bc)g nil(R)[M]− + + = + − + ∈

Now, since R is nil M-Armendariz, so 1.(a+bc) = 
a+bc is nilpotent.

(d) Suppose a,b are nilpotent. Now by applying (c) 
several  times  we  can  see  that,  since  a2,  a  and-
b  are  nilpotent, a2-ab is nilpotent, hence a2-ab-ba
is nilpotent,  so  a2-ab-ba+b2 is nilpotent. Therefore 
(a-b)2 is nilpotent, which means that a-b is
nilpotent.

From Lemma 2.10 we get.

Proposition 2.11: If R is a nil-M-Armendariz, then 
nil(R) is a subring of R.

Therefore by Proposition 2.11 we have, if R is an 
M-Armaendariz ring, then nil(R) is a subring of R.

Proposition 2.12: Let R be a ring and M a monoid. 
Then R is nil-M-Armendariz if and only if, for any n, 
Tn(R) is nil-M-Armendariz.

Proof: We note that any subring of nil-M-Armendariz
rings is nil-M-Armendariz. Thus if Tn(R) is a nil-M-
Armendariz ring, then R is a nil-M-Armendariz.
Conversely, let 

1 1 2 2 p p= A g A g A gα + + +

and
1 1 2 2 q q= B h B h B hβ + + +

be elements of Tn(R)[M]. Assume that
nnil T(R)[M]αβ∈ . It is easy to see that there exists an 

isomorphism of rings Tn(R)[M]→ Tn(R[M]) defined by 

p

i 1=
∑

i i i i
11 12 13 1n

i i i
22 23 2n

i i
33 3n

i

i
nn

a a a a
0 a a a
0 0 a a

g

0 0 0 a

 
 
 
 
 
 
 
   







   



p p p p
i i i i
11 i 12 i 13 i 1n i

i=1 i=1 i=1 i=1
p p p

i i i
22 i 23 i 2n i

i=1 i=1 i=1

p p
i i
33 i 3n i

i=1 i=1

p
i
nn i

i=1

a g a g a g a g

0 a g a g a g

.0 0 a g a g

0 0 0 a g

 
 
 
 
 
 
 
 →
 
 
 
 
 
 
  

∑ ∑ ∑ ∑

∑ ∑ ∑

∑ ∑

∑







   



Assume that 
i i i i
11 12 13 1n

i i i
22 23 2n

i i
33 3ni

i
nn

a a a a

0 a a a

0 0 a aA =

0 0 0 a

 
 
 
 
 
 
 
 
  
 







   



and
j j j j
11 12 13 1n

j j j
22 23 2n

j j
33 3nj

j
nn

b b b b

0 b b b

0 0 b bB =

0 0 0 b
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Then we have

p p p p
i i i i
11 i 12 i 13 i 1n i

i=1 i=1 i=1 i=1
p p p

i i i
22 i 23 i 2n i

i=1 i=1 i=1

p p
i i
33 i 3n i

i=1 i=1

p
i
nn i

i=1

a g a g a g a g

0 a g a g a g

0 0 a g a g

0 0 0 a g

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

∑ ∑ ∑ ∑

∑ ∑ ∑

∑ ∑

∑







   



q q q q
j j j j

11 j 12 j 13 j 1n j
j=1 j=1 j=1 j=1

q q q
j j j
22 j 23 j 2n j

j=1 j=1 j=1

q q
j j

n33 j 3n j
j=1 j=1

q
j
nn j

j=1

b h b h b h b h

0 b h b h b h

nil T (R[M])0 0 b h b h

0 0 0 b h

 
 
 
 
 
 
 
 ∈
 
 
 
 
 
 
 
 

∑ ∑ ∑ ∑

∑ ∑ ∑

∑ ∑

∑







   



Because n nT (R)[M] T (R[M])≅ and

n

nil(R) R R
0 R

nil(T (R) ) =
0 0 nil(R)

 
 
 
 
 
 



then we have 
p q

i j
ss i ss j

i 1 j 1
( a g )( b h ) nil(R)[M]

= =

∈∑ ∑ ,

for s = 1,2,…,n
Since R is nil-M-Armendariz, there exists ijsm N∈  such that mi j ijs

ss ss(a b ) 0=  for any s,i and j. Let

ij ij1 ij2 ijsm max{m ,m ,...,m }= , then 

miji j
11 11

i j
22 22

i j
mij 33 33

i j

i j
nn nn

0 * * *a b * * *
0 0 * *0 a b * *
0 0 0 *0 0 a b *

( A B )

0 0 0 00 0 0 0 a b

   
   
   
   
 = =  
   
   
        







      



Thus m nij
i j( ( A B ) ) 0= . This shows that Tn(R) is a nil-M-

Armendariz ring. 

Corollary 2.13: Let M be a mo noid. If a ring R is a M-
Armendariz ring, then for any n, Tn(R) is a nil-M-
Armendariz ring.

Given a ring R and a bimodule RMR, the trivial 
extension of R by M is the ring T(R, M) =R M⊕  with 
the usual addition and the multiplication: 

1 1 2 2 1 2 1 2 1 2( r ,m) . ( r ,m ) = ( r r , r m m r )+

This is isomorphic to the ring of all matrices
r m
0 r
 
 
 

, where r∈R and m∈M and the usual matrix

operations are used.

Proposition 2.14: Let M be a monoid. Then R is nil-M-
Armendariz if and only if the trivial extension T(R,R) is 
nil-M-Armendariz ring.

Proof: It follows from Proposition 2.12. 

Proposition 2.15: Let M be a cancellative monoid and 
N be an ideal of M. If a ring R is a nil-N-Armendariz,
then R is a nil-M-Armendariz.

Proof: Let 
1 1 m m= a g a gα + +

1 1 n n= b h b hβ + +

in R[M] with nil(R)[M]αβ∈ . Set g∈N, then
1 2 m 1 2 ngg ,gg , ,gg ,  h g , h g , , h g N∈     and i jgg gg≠    and
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i jh g h g≠  when i≠j. Now from
m n

i i j j
i=1 j=1

( a g g ) ( b h g ) nil(R)[N]∈∑ ∑  and the hypothesis that R

is nil-N-Armendariz, it follows that i ja b nil(R)∈  for all 
i and j. Thus R is nil-M-Armendariz.

Let  M  be  a  monoid. If R is semicommutative 
ring and M-Armendariz ring, then R[M] is
semicommutative. Hence we have:

Proposition 2.16: Let M be a monoid and N a u.p.-
monoid. If R is a semicommutative and M-Armendariz
ring, then R[M] is nil-N-Armendariz ring. 

Proof: Since R is a semicommutative and M-
Armendariz ring, R[M] is semicommutative, the
assertion holds according to corollary 2.6.

Lemma 2.17: Let R be a semicommutative ring and M
a monoid. If 1 na a nil(R)∈ , then 

1 1 n na g a g nil(R[M])+ ∈

Proof: The proof is similar to that of [7, Lemma 3.7]. 

Proposition 2.18: Let M be a monoid and N a u.p.-
monoid. If R is a semicommutative and M-Armendariz
ring, then R[N] is nil-M-Armendariz ring.

Proof: It is easy to see that there exists an isomorphism 
of rings R[N][M]→ R[M][N] defined by

ip i p ip p i
p i i p

( a n )m ( a m )n→∑ ∑ ∑ ∑

Now suppose that i j, R[N]α β ∈  are such that 

'
i i j j

i j
( m ) ( m ) nil(R[N])[M]α β ∈∑ ∑

We will show that i j nil(R[N])α β ∈  for all i,j,
assume that 

i ip p
p

= a nα ∑
and

'
j jq q

q
= b nβ ∑

where '
p qn ,n N∈  for all p,q. Then 

' '
ip p i jq q j

i p j q
( ( a n )m)( ( b n )m ) nil(R[N])[M]∈∑ ∑ ∑ ∑

Thus, in R[M][N] we have

' '
ip i p jq j q

p i q j
( ( a m )n )( ( b m ) n ) nil(R[M])[N]∈∑ ∑ ∑ ∑

by Proposition 2.16, R[M] is nil-N-Armendariz,

'
ip i jq j

i j
( a m )( b m ) nil(R[M])∈∑ ∑

for all p,q. Since R is M-Armendariz, i ja b nil(R)∈  for 
all i,j,p,q according to [6, Proposition 1.6]. Hence

i j nil(R[N])α β ∈ , by Lemma 2.17. This means that R[M] 
is nil-M-Armendariz.

Corollary 2.19: Let M be a monoid and R be a
semicommutative ring. If R is M-Armendariz ring, then 
R[x] and R[x,x-1] are nil-M-Armendariz ring.

Proof: Note that R[x] R[N {0}]≅ ∪ and 1R[x,x ] R[Z].− ≅
In  [6],  Liu  showed  that  if  R is  reduced  and 

M-Armendariz, then R is M×N-Armendariz, where N is 
a u.p.-monoid. For nil-M-Armendariz rings, we have 
following result.

Proposition 2.20: Let M be a monoid and N be a u.p.-
monoid. If R is a semicommutative and M-Armendariz
ring, then R is nil-M×N-Armendariz ring.

Proof: Suppose that
s

i i i
i=1

a ( m , n )∑  is in R[M×N].

Without loss of generality, we assume that 

1 2 s 1 2 t{ n ,n , , n } = { n , n , , n } 

with i jn n≠  when 1 i j t.≤ ≠ ≤  For any 1≤p≤t, denote 

p i pA ={i |1 i s,n = n }≤ ≤

Then
t

i i p
p=1 i A p

( a m ) n R[M][N]
∈

∈∑ ∑

Note that i 'i
m m≠  for any '

pi,i A∈  with i≠i′. Now 
it is easy to see that there exists an isomorphism of 
rings R[M×N]→R[M][N] defined by 

s t

i i i i i p
i=1 p=1 i Ap

a ( m , n ) ( a m ) n
∈

→∑ ∑ ∑

Suppose that 
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s s
' '

i i i j j j
i=1 j=1

( a ( m , n ) ) ( b (m ,n )) nil(R)[M N]
′

∈ ×∑ ∑

in R[M×N]. Then from the above isomorphism, it
follows that 

't t
' '

i i p j j q
p = 1 i A q=1 j Bp q

( ( a m ) n ) ( ( b m ) n ) nilR[M][N]
∈ ∈

∈∑ ∑ ∑ ∑

By Proposition 2.16, R[M] is nil-N-Armendariz,
thus we have

'
i i j j

i A j Bp q

( a m ) ( b m ) nil(R[M])
∈ ∈

∈∑ ∑

for all p,q. Since R is M-Armendariz, i ja b nil(R)∈  for 

any  i∈Ap and  j∈Bq by [6, Proposition 1.6]. Hence,
i ja b nil(R)∈  for all 1≤i≤s and 1≤i≤s′.
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