World Applied Sciences Journal 13 (12): 2509-2514, 2011
ISSN 1818-4952
© IDOSI Publications, 2011

Nil-Armendariz Rings with Applications to a Monoid

M.J. Nikmehr, F. Fatahi and H. Amraei

Department of Mathematics, Faculty of Science, K.N. Toosi University of Technology, Tehran, Iran

Abstract: For a monoid M,

we introduce nil-M-Armendariz 1ngs, which are generalization of

nil-Armendariz rings; and we investigate their properties. This article proves that a ring R is nil-M-
Armendariz if and only if for any n, T,(R) is nil-M-Armendariz. We show that if R is a semicommutative

and M -Armendariz ring, then R is nil-MxN-Armendariz ring, where N is a u.p.-monoid.
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INTRODUCTION

Throughout this article R denotes an associative
ring with identity, nil(R) denotes the set of all nilpotent
elements of R and M denotes a monoid with identity e.
Rege and Chhawchharia [8] introduced the notion of an
Armendariz ring. They define a ring R to be an
Armendariz ring if whenever polynomials

f(x)=a,+ax' +---+a x"
g(x)=b, +bx'+---+b x" e R[x]

satisfy f(x)g(x)=0, then ab; = 0 for each i and j. (The
converse is always true.) The name Armendariz ring
was chosen because Armendariz [3] had noted that a
reduced ring satisfies this condition. Some properties of
Armendariz rings where given in [1, 3-5, 8]. A monoid
M is called a u.p.-monoid (unique product monoid) if
for any two non empty finite subsets A,BcM, there
exists an element geM uniquely presented in the form
ab where acA and beB. Liu [6] called a ring R M-
Armendariz if whenever elements o =ag, +-+a,g,,
B=bh, +---+bh, eR[M] satisfy aff = 0, then gb; =0
for all i,j. Which is a generalization of Armendariz
rings. We recall that a ring R is called weak M-
Armendariz ring [9] if whenever elements

o=ag +---+a,g ,B=bh +---+bh eR[M]

satisfy aff = 0, then ajbjenil(R) for each i and j. Which
is a generalization of weak Armendariz rings. Recall
that a ring R is said to be nil-Armendariz [2] if

whenever two polynomials f(x),g(x)eR[x] satisfy
f(x)g(x) e nil(R)[x], then abenil(R) for all aecoef

(f(x)) and becoef (g(x)), coef (f(x)) denotes the
subsets of R of the coefficients of f(x).

In this article we call a ring R a nil-M-Armendariz
(an nil-Armendariz ring relative to M) if whenever
elements

oa=ag +---+a,g ,f=bh +---+bh eR[M]

satisfy afenil(R)[M], then a;b; enil(R) for all i,j.

We prove that M-Armendariz rings are nil-M-
Armendariz. If M = {NuU{0},+}, nil-M-Armendariz
rings are nil-Armendariz.

Also in Proposition 2.12 we give a suitable answer
to this question that a ring R is nil-M-Armendariz if and
only if, for any n, T,(R) is nil-M-Armendariz.

We investigate nil-M-Armendariz properties, also we
have:

M — Armendariz = nil—- M — Armendariz,

Armendariz = nil — Armendariz = weak Armendariz

NIL-M-ARMENDARIZ RING

We will assume that all rings are associative with
identity. If R is a ring, nil(R) denotes the set of
nilpotent elements in R and M denotes a monoid with
identity e.

Before
following:

stating Proposition 2.2, we need the
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Lemma 21: [6, Proposition 1.1] Let M be a
u.p-monoid and R a reduce ring. Then R is M-
Armendariz.

Proposition 2.2: Let R be a ring such that nil(R)<R
and M be a u.p-monoid and

a=ag +--+a,g,
B=bh, +:--+bh, eR[M]

Then if af enil(R)[M], a,b; e nil(R) for alli,j.

Proof: Observe that is reduced, since M is a

nil(R)

u.p-monoid, hence by Lemma 2.1, we have give —
nil(R)

is M-Armendariz. Suppose op enil(R)[M]. Then if we

denote by E,B the corresponding elements in
L[M] s aE:B. Since is M-Armendariz, so
nil(R) nil(R)

Eigj: 0 for each i,j. Hence, a,b; enil(R) forallij,

Definition 2.3: [9] A ring R is said to be weak M-
Armendariz if whenever elements

o=ag +--+a,g ,B=bh +---+bh eR[M]

satisfy aff = 0, then a;b; e nil(R) for each i and j.

Clearly, M-Armendariz rings are weak M-
Armendariz. We now present here a stronger condition,
given by the property obtained in Proposition 2.2.

Definition 2.4: A ring R is said to be nil-M-Armendariz
if whenever elements

a=ag +--+a,g.,B=bh +---+bh eR[M]
satisfy of enil(R)[M], then a;b, enil(R) for each i and j.

We recall a ring R is called semicommutative if for
all a,b €R, ab =0 implies aRb = 0.

R
7

L nilI(R)

We observe that if M be a u.p.-monoid, then by
Proposition 2.2, R is nil-M_Armendariz. More generally

we obtain the following.

Proposition 2.7: Let R be a ring and I<R a nil ideal

and M be a monoid. Then R is nil-M-Armendariz if and
only if R/ is nil-M-Armendariz.

=

I

nil(R)=nil(R). Hence aPenil(R)[M] if and only if
apenil(R)[M]. If accoef (o) and becoef(p), then
apenil(R) ifand only if abe nil(R).

Therefore R is nil-M-Armendariz if and only if R
is nil-M-Armendariz.

Before stating Proposition 2.9, we need the
following:

Proof: We denote Since I is nil, then

Lemma 2.8: Let R be a nil-M-Armendariz ring and
n>2. If a,,a,,...,0, € RIM] such that a,--a,enil
(R)[M], then if ayecoef (ox) for k = 1,...,n, we have
aa,---a, enil (R).

Proof: We use induction on n. The case n = 2 is clear
by definition of nil-M-Armendariz ring.

Suppose n>2. Consider
ha, e nil(R)[M], R

a,a, € nil(R) where apecoef (h) and a,ecoef (o).

Then
nil-M-Armendariz

h=o0, -0

n-1°

since is

Therefore, for all a, ecoef (o),
(x’l o (thz (a’nflan) = h an € HII(R)[M]

and by induction, since the coefficients of a, a, are

a _a

n—1%n

where a,.; is a coefficient of a,.;, we obtain

aa,---a,a,enil(R) foragecoef (o), k=1,....,n.

Proposition 2.9: If R
nil(R[M]) < nil(R)[M] .

is nil-M-Armendariz, then

Proof: Supposea enil(R)[M] and o™ = 0. By Lemma

Lemma 2.5: [J, Lemma 3.1] Let R be a 2.8, we have that a ---a_ enil(R) where a; is a

semicommutative ring. Then nil(R) is an ideal of R. By

Proposition 2.2 and Lemma 2.5 we have: coefficient of o for i = 1,...,m. In particular, for every

aecoef(a), d" is nilpotent. Therefore a enil(R) for all

Corollary 2.6: Let M be a u.p-monoid and R a
semicommutative ring. Then R is nil-M-Armendariz

ring. Recall that if Icnil(R), then
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Lemma 2.10: Let R be a nil-M-Armendariz ring.

(a)
(b)

If a,b are nilpotent, then ab is nilpotent.

If a,b,c are nilpotent, then (a+b)c and c(a+b) are
nilpotent.

If a,b,c are nilpotent, then a+bc is nilpotent.

If a,b are nilpotent, then a-b is nilpotent.

(c)
(d)

Proof: (a) Suppose a,b are nilpotent and b™ = 0. Then

m-1 m-1

(ae—abg)(le+ bg+b’g +---+b" 'g" ")=ae enil(R)[M]

Since R is nil-M-Armendariz, hence abe nil(R).

(b) Suppose a,b,c are nilpotent, so a" =b™= 0 for some
positive integer m, n. Then

(le+---+a"'g"")(le — ag)(le — bg)
(le+---+b™'g" ce=ce

It we multiply the elements in the middle, we obtain

(le+---+a"'g" ")(le—(a+b)g+abg’)
(le+---+b""'g" ce=ce

Now, since R is nil-M-Armendariz and
ceenil(R)[M], by Lemma 2.8, we can choose the
appropriate coefficients from each element of R[M] to
obtain (a+b)cenil(R). Similarly we see that
c(a+b)enil(R).

(c) Suppose a,b,c are nilpotent. By (a), bc is nilpotent
and by (b), b(at+bc) is also nilpotent. Hence

(le —bg)(ce+ (a + bc)g) =ce +ag — b(a+ be)g” € nil(R)[M]

Now, since R is nil M-Armendariz, so 1.(atbc) =
a+bc is nilpotent.

(d) Suppose a,b are nilpotent. Now by applying (c)
several times we can see that, since a’, a and-
b are nilpotent, a*-ab is nilpotent, hence a’-ab-ba
is nilpotent, so a’-ab-ba+b? is nilpotent. Therefore
(a—b)2 is nilpotent, which means that a-b is
nilpotent.

From Lemma 2.10 we get.

Proposition 2.11: If R is a nil-M-Armendariz, then
nil(R) is a subring of R.

Therefore by Proposition 2.11 we have, if Ris an
M-Armaendariz ring, then nil(R) is a subring of R.
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Proposition 2.12: Let R be a ring and M a monoid.
Then R is nil-M-Armendariz if and only if, for any n,
Tn(R) is nil-M-Armendariz.

Proof: We note that any subring of nil-M-Armendariz
rings is nil-M-Armendariz. Thus if T,(R) is a nil-M-
Armendariz ring, then R is a nil-M-Armendariz.
Conversely, let

a=Ag +Ag ++Ag

and
B=Bh, +B,h, +~-~+thq

be elements of T,R)[M]  Assume that
aBenil T(R)[M]. It is easy to see that there exists an

isomorphism of rings T,(R)[M]— T,(R[M]) defined by

i i i
a, a5, a; an
i i i
0 a, ay as,
p i i
0 0 aj as,
. . . . |8
= : : : f
0o 0 O a,

Zailgi Zaizgi Za;3gi Zallngi
i=1 i=1 i=1 i=1
0 Zalzzgi Za'ﬂgi Zalani
i=1 i=1 i=1
P ; P ;
> 0 0 Dalg . DA |
i=1 i=1
p .
0 0 0 Dag
i=1
Assume that
311 aiz ali3 ailn
0 a3 anp aj,
A= 0 0 ai33 ai3n
0 0 0 al,
and
bl bl bl o b,
j j j
0 by, by by,
Bj - 0 0 bJ33 bJSn
0 0 0 bl
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Then we have

P P P P 1 1 4.
Zalngi Zallzgi Za‘Bgi Zallngi Zlbljlhj Zbljzhj zlbthi Zblﬂl
i=1 i=1 i=1 i=1 = = =
P P P d . a. .
0 zalzzgi Za'23gi Zalzngi 0 Zbélhj zb%3h ZbZn i
i=1 i=1 i=1 =1 =1
P b .
0 0 Dalg, Dalg 0 0 ib”hJ ibsn ; |enil T,(R[M])
i=1 i=1 j=1
P .
0 0 0 Al g 0 0 0 ibm J
i=1
Because T,(R)[M] =T, (R[M]) and
nil(R) R R
il(T,(R)) - R
ni =
" 0 0 nil(R)
then we have
(Za“g )(zblshj)eml(R) M],
fors=12,...n
Since R is nil-M-Armendariz, there exists my eN such that (alb})"*=0 for any s,i and j. Let
my = max{m,,m,,...,m;} , then
allbil * * * \Mioog x * *
0 aib, * 00 * *
apfiz| 0O aBbJ33 * | _|ooo *
) : : R :
0 0 0 0 ab 000 .0

Thus ((ABJ.)mij " =0. This shows that T,(R) is a nil-M-

Armendariz ring.

Corollary 2.13: Let M be a monoid. If a ring R is a M-
Armendariz ring, then for any n, T,(R) is a nil-M-
Armendariz ring.

Given a ring R and a bimodule gMg, the trivial
extension of R by M is the ring T(R,M)=R®M with

the usual addition and the multiplication:
(5,m).(5,my)=(rr, ;m, +mx,)
This is isomorphic to the ring of all matrices

!

operations are used.

m .
], where ©R and neEM and the usual matrix
T

Proposition 2.14: Let M be a monoid. Then R is nil-M-
Armendariz if and only if the trivial extension T(R,R) is
nil-M-Armendariz ring.

Proof: It follows from Proposition 2.12.

Proposition 2.15: Let M be a cancellative monoid and
N be an ideal of M. If a ring R is a nil-N-Armendariz,
then R is a nil-M-Armendariz.

Proof: Let
oa=ag +--+ta,g,

B=bh,+---+bh,

then
and

in R[M]
28,88,

with  afenil(R)[M]. Set
.22, hg,hg, . ,hgeN and gg #gg,

geN,
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hg#hg when i#]. Now from

(i agg) (Zn:bjhg) enil(R)[N] and the hypothesis that R
i=1 i=1

is nil-N-Armendariz, it follows that ab; e nil(R) for all

iand j. Thus R is nil-M-Armendariz.

Let M be a monoid. If R is semicommutative
ring and M-Armendariz ring, then R[M] is
semicommutative. Hence we have:

Proposition 2.16: Let M be a monoid and N a u.p--
monoid. If R is a semicommutative and M-Armendariz
ring, then R[M] is nil-N-Armendariz ring.

Proof: Since R is a semicommutative and M-
Armendariz ring, R[M] 1is semicommutative, the

assertion holds according to corollary 2.6.

Lemma 2.17: Let R be a semicommutative ring and M
amonoid. If a,---a, enil(R) , then

ag +---a,g, enil(R[M])
Proof: The proof is similar to that of [7, Lemma 3.7].
Proposition 2.18: Let M be a monoid and N a u.p--
monoid. If R is a semicommutative and M-Armendariz

ring, then R[N] is nil-M-Armendariz ring.

Proof: It is easy to see that there exists an isomorphism
of rings R[N][M]— R[M][N] defined by

Z(Zaipni)mp - Z(Zaipm DT
P i i p
Now suppose that o, ;€ R[N] are such that

(2 om) (B;m;) € nil(RIND[M]

We will show that a,f enil(R[N]) for all ij,

assume that

o ‘Zam b
and

B Zblq q

where n ,n_ e N for all p,q. Then
(Z(Za,p p)m)(Z(zqunq)m ) € nil(R[N])[M]

Thus, in R[M][N] we have

(X(Xa,m )n, (XX b,m)n,) € nil RIMDIN]

by Proposition 2.16, R[M] is nil-N-Armendariz,

(aym; XD bym ) € nil(R[M])

for all p,q. Since Ris M-Armendariz, ab;enil(R) for
all ij,p,q according to [6, Proposition 1.6]. Hence
a, B; enil(R[N]), by Lemma 2.17. This means that R[M]

is nil-M-Armendariz.

Corollary 2.19: Let M be a monoid and R be a
semicommutative ring. If R is M-Armendariz ring, then
R[x] and R[x,x'l] are nil-M-Armendariz ring.

Proof: Note that R[x]= R[N u{0}] and R[x,x"' ]=R[Z].
In [6], Liu showed that if R is reduced and

M-Armendariz, then R is MxN-Armendariz, where N is
a u.p.-monoid. For nil-M-Armendariz rings, we have
following result.

Proposition 2.20: Let M be a monoid and N be a u.p.-
monoid. If R is a semicommutative and M-Armendariz

ring, then R is nil-M xN-Armendariz ring.

Proof: Suppose that Zai(m,r}) is in R[MxN].
i=1
Without loss of generality, we assume that

{n,n,,...,n}={n,n,....n}

with n, # n; when 1<i=j<t. Forany 1<p<t, denote

A, ={i[1<i<s,n;=n}

Then
Zl:( D am)n, eR[M][N]

=1 i
P p

Note that m, =m, for any i,i e A with i#i'. Now

it is easy to see that there exists an isomorphism of
rings RIM xN]—>R[M][N] defined by

Za(m u)»Z(Zam)n

pllEA

Suppose that

2513
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(S a(m,n)) (3 bym;.n)) < mil(R)Mx N]

in RIMxN]. Then from the above isomorphism, it
follows that

(Z[:(Zaim )n) (i (> bm) i) € nilRM][N]

=1 A -1 jeB
P » =l jeB

By Proposition 2.16, R[M] is nil-N-Armendariz,
thus we have

(3 am) (Y bm) enil(R[M])

i€A jeB
p q

for all p,q. Since Ris M-Armendariz, ab;enil(R) for

any €A, and jgBg by [6, Proposition 1.6]. Hence,
a,b; enil(R) for all 1<i<s and 1<i<s’.
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