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Efficient Sixth-Order Nonlinear Equation Solvers Free from Derivative
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Abstract: The construction of some without memory efficient sixth-order iterative schemes for solving 
univariate nonlinear equations is presented. Per iteration, the novel methods comprise four evaluations of 
the function, while they are free from derivative calculations. The application of such iterative methods is 
appeared, when the cost of derivative evaluation is expensive. We analytically show the sixth-order
convergence of the contributed schemes and finally numerical examples are considered to confirm their 
rapid convergence.
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INTRODUCTION

This article deals with numerical solution of
nonlinear  equations  of  the form f(x) = 0. The exact 
and analytical solutions of such equations are not 
always at hand. That is why the accurate iterative
methods, in which the number of functional evaluations 
is appropriate, are required. Let α be a root of such 
equations. This root is divided  into  two  categories, 
i.e., a simple zero [6, 11, 12] or a multiple zero [3, 13].
In this study, we are concerned with simple roots of 
nonlinear equations. Assume α in the open interval D, 
be a simple root of the nonlinear equation f(x) = 0, then 
f(α) = 0 and f′(α) ≠ 0. In engineering problems or in 
real-world situations when the calculations of the
derivatives  of  the  functions  are  not  a  rational
action or cost so much time; we require some root 
solvers at which there is no need of derivative
calculations per iteration to obtain an accurate
approximation of the exact root. Hence herein, we
develop efficient sixth-order derivative-free techniques. 

Let { }∞=0kkx  be a sequence in nR , 1≥n , convergent 

to α. Afterwards, the convergence is said to be of order 
p>1 (for systems of nonlinear equations; n = 1 reduces 
to the case of single valued nonlinear equations), if 
there exist M>0 and k0 such that

pkk xMx −≤−+ )()1( ,

for
0kk ≥ . We also remind that, the Ostrowski-Traub

efficiency index [16] could be provided by p1/θ, wherein 

θ is the whole number of evaluations of the iterative 
scheme per iteration.

This article is organized as follows. After collecting 
some important derivative-free root solvers in the next 
section, our without memory high-order algorithms will 
be developed in the third section. Consequently in 
fourth section, comparisons are made between the
existed methods and the new techniques to reveal that 
the novel contributed derivative-free techniques are
effective and convenient. Finally in the last section, our 
conclusion is presented.

BACKGROUND LITREATURE

For quite some time, the Steffensen's method which 
is given by 
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was the only reported quadratically derivative-free
scheme. This method was obtained by replacing the 
forward-finite difference approximation in the first
derivative of the well-known Newton's method. 

In 2001, Wu et al. [17] presented another second-
order derivative-free method as follows
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where the parameter b should be chosen such that the 
denominator is non-zero, for example,
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      This scheme possesses 1.414 as the efficiency.
Motivated by these methods, two-step iterative methods 
have been presented to date for boosting up the order of 
convergence and the efficiencies of the existing
methods.

In 2007 in [5], a derivative-free method of order 
three in which we have three evaluations of the function 
had been presented in the following structure 
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where its efficiency is 1.442. 
In 2010, another third-order iterative algorithm had 

been developed by Dehghan and Hajarian in [1] as 
follows
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As we can see, this algorithm also includes three 
evaluations of the function per iteration with 1.442 as 
its efficiency. 

Recently, an accurate fourth-order method [8] was 
proposed by Liu et al. as comes next
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wherein )( nnn xfxz +=  and the efficiency is 1.587. 
This method consists of three evaluations of the
function per iteration  to  obtain  the  fourth-order
convergence.

In this method [ ] [ ] [ ]nnnnnn zxfzyfyxf ,,,,, are
divided differences of f(x) and defined by
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To see more on this field of study, kindly refer to 
[4, 9, 10]. 

THE PROPOSED 
DERIVATIVE-FREE METHODS

In this section our contributions are derived from 
relation (1). Let us consider the following three-step
iterative algorithm















′
−=

′
−=

−
−=

+ ,
)(
)(

,
)(
)(

,
)()(

)(

1

2

n

n
nn

n

n
nn

nn

n
nn

zf
zfzx

yf
yfyz

xfwf
xfxy

(6)

wherein ))(()( nnn xfxfwf += that is to say

)( nnn xfxw += .
This construction consists of two evaluations of the 

function-derivative, which is not in our aim. To remedy 
this, we should approximate these derivatives as
efficiently as possible. Now we approximate f′(yn), to 
reduce the number of evaluations per iteration by a 
combination of already known data in the past steps, i.e. 
steps one and two. Toward this end, an estimation of the 
function f(t) is taken into consideration as follows

),()()( 10 nxtaatLtf −+=≈

which its first derivative is 1)( atL =′ . By substituting 
in the known values

)(|)( nx xftL
n
= , ),(|)( ny yftL

n
=

we could easily obtain the unknown parameters. Thus, 
we have a0 = f(xn) and

( ) ( ) [ ].,/)()(1 nnnnnn yxfyxyfxfa =−−=

Although the use of f(wn) in approximating f′(yn)
will result in a more accurate estimation, we do not use 
it only to reduce the computational load intentionally.

At this time, it is necessary to approximate f′(zn), in 
(6), with a combination of known values, that is f(xn),
f(yn) and f(zn).

Note that again in our estimations we do not use the 
known value f(wn) by purpose. Because the usage of 
more known values will increases the computational
complexity of the contributed method. Accordingly, we 
take account of an interpolating polynomial
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and also consider that this approximation polynomial 
satisfies the interpolation conditions )()( nn xpxf = ,

)()( nn ypyf =  and )()( nn zpzf = . By substituting the 

known values in p(t), we have a system of three linear 
equations with three unknowns. By solving this system 
and simplifying we have
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For this reason, a powerful approximation of the 
first derivative of the function in the third step of (6) is 
attained as comes next

cxzbzpzf nnnn +−=′≈′ )(2)()(
[ ] [ ] [ ].,,, nnnnnn yxfyzfzxf −+=                      (8)

By taking into consideration of the new
approximation for f′(yn) and (8) in (6); and also
simplifying, we attain the following three-step efficient 
technique, which contains only four evaluations of the 
function per iteration to obtain the sixth-order
convergence
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Theorem 1: Assume that RRDf →⊆:  be a
sufficiently  differentiable  function  with  a  simple 
zero α⊆D, D be an open interval, x0 be a guess close 
enough to α, then the new method (9) has sixth-order
convergent.

Proof: Let en = xn-α be the error in the nth iterate and 
consider ƒ(α) = 0, ,....3,2,1,

!
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Now we expand ƒ(xn) around the simple zero α. Thus, 
we have
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By considering (10) and the first step of (9), we attain
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We ought to expand ƒ(yn) around the simple root by 
using (11). Therefore, we have
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In the same way, we obtain for the second step that
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This shows that the novel scheme reaches the third 
order of convergence at the end of the second step. At
this time, the Taylor expansion about the simple root for 
ƒ(zn) is needed. We find its expansion as follows
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Using (14) and the divided differences in the
denominator of (9) gives us
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Now dividing (14) by (15) and using the last step of 
(9), ends in 
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This completes the proof and shows that our
proposed derivative-free method is a sixth-order
algorithm. (9) possesses 61/4≈1.565 as its efficiency 
index.

Hereby we note that an iterative method without 
memory using four evaluations per full cycle can reach 
the optimal order 8 while our proposed method is  a 6th 
scheme. Although our presented method is not optimal, 
it includes less computational effort than the optimal 
8th order methods, such as the techniques in [2].

The attained efficiency index is greater than 1.414 
of (1) and (2), 1.442 of the third-order methods, such as 
(3), (4) or the method in [15] and it is same to the 
technique in [14].

Now we aim to provide similar sixth-order schemes 
to (9). To do this, let us first consider a more
generalized approximation of the first derivative in the 
Newton's iteration (at the first step) using the one
parameter backward finite-difference scheme of order 
one in what follows: 
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wherein }0{−∈ R . Also in a similar way for
approximating ƒ′(yn) at the second step of our cycle; we 
get that [ ]nnn ywfyf ,)( ≈′  where )( nnn xfxw −= .
Considering all these new approximations (and the
somewhat similar estimation for the first derivative in 
the third step as used in (9), i.e., 

[ ] [ ] [ ],,,,)( nnnnnnn ywfyzfzwfzf −+≈′

we    attain    the   follow-up   sixth-order   iteration 
without memory (uni-parameter family) in which there 
are only four function evaluations per full cycle
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where its error equation is as follows: 
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with }0{−∈R . Thus, we have obtained another
efficient sixth-order uni-parameter family of derivative-
free methods, which is so much fruitful when the
calculation of derivatives of the given function is
expensive.

Remark 1: The without memory iterations (9) and (17) 
are not optimal according to the optimality conjecture 
of Kung and Traub (1974) [7], but they possess less 
computational complexity in implementing than the
computational burden of the optimal eighth-order
derivative-free methods.

We also remark that, iterations (9) or (17) are
without memory iterative methods. To attain with
memory iterative schemes, one should approximate β in 
(17) by iterations from the known values up to the first 
derivative. However, such schemes are not of our
interests at the moment and thus, we do not drag the 
issue into them.

NUMERICAL IMPLEMENTATIONS

In this section, numerical examples are furnished to 
re-verify the effectiveness of the proposed derivative-
free methods. The comparison among the presented 
method (9)-(PM1) (due to similarity of (9) and (17), we 
only report the numerical results of (9)), with the
second-order Steffensen’s method (SM), third-order
method of Jain (JM), third-order method of Dehghan 
and Hajarian (DHM) and the fourth-order method of 
Liu et al. (LM) are given. The test functions with their 
roots are displayed in Table 1. 

Note that in case of same-order methods, the
convergence behavior is almost similar because of
similar characters. The results are provided in Tables 2 
and 3. All of the calculations were done with MATLAB
7.6 using 15 digits floating point arithmetic
(Digits:=15). In  examples  considered  in this  article,
the  stopping  criterion  is  the |f(xn)|≤ε, where ε = 10-15.

A reasonably close starting value is necessary for 
the methods to converge. This condition, however,
practically applies to all iterative methods for solving 
equations.

Note that recently, many authors have employed 
more number of significant digits in their computations, 
but we herein believe that double precision is
satisfactory to show the sixth-order convergence for not 
so close initial guesses and due to this we do not 
employ more number of significant digits in our
numerical illustrations. 

Tables 2 and 3 manifest the effectiveness of our 
derivative-free algorithms in this contribution. We have 
computed each test function by three different initial 
guesses. To compare the Total Number of Evaluations 
(TNE) of different derivative-free methods, we have
provided Table 3.
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Table 1: Test functions and their roots

Test functions Roots

xxf += 2
1 )(sin α = 0

27
)3729(21)

2
cos()1( 23

2
+−−++= xxxf α = 1/3

1)(sin 22
3 +−= xxf 153414044916482.1≈

1)sin(4 −+= − xef x 331130768312745.2≈

1.05 −= − xxef 589631118325591.0≈

Table 2: Comparison of different derivative-free methods in terms of required number of iterations
Methods Guesses SM JM DHM LM PM1
f1 0.7 5 3 4 3 2
f1 1.0 15 7 7 5 4
f1 1.6 12 7 7 5 2
f2 0.8 5 4 4 3 2
f2 0.15 4 3 3 3 2
f2 1.6 Div. Div. Div. 8 3
f3 2.0 6 5 4 3 2
f3 6.0 Div. Div. Div. Div. 3
f3 0.6 6 4 4 3 3
f4 1.6 5 4 4 3 3
f4 4.1 5 3 3 3 3
f4 2.7 4 3 3 3 2
f5 0.7 Div. 8 Div. 7 3
f5 1.3 Div. Div. Div. Div. 4
f5 -1.0 14 5 9 5 3

Table 3: Comparison of TNE for different derivative-free methods
Methods Guesses SM JM DHM LM PM1
f1 0.7 10 9 12 9 8
f1 1.0 30 21 21 15 16
f1 1.6 24 21 21 15 8
f2 0.8 10 12 12 9 8
f2 0.15 8 9 9 9 8
f2 1.6 - - - 24 12
f3 2.0 12 15 12 9 8
f3 6.0 - - - - 12
f3 0.6 12 12 12 9 12
f4 1.6 10 12 12 9 12
f4 4.1 10 9 9 9 12
f4 2.7 8 9 9 9 8
f5 0.7 - 24 - 21 12
f5 1.3 - - - - 16
f5 -1.0 28 15 27 15 12

In fact, the results from numerical experiments
confirm the assertions in the last section. Scientific
computations in many areas of science and engineering 
demand a high-order root solvers; due to this, we have 
constructed (9) and (17). In addition, these derivative-
free methods can be further applied for finding the

multiple roots of nonlinear equations by applying a
suitable transformation and converting the multiple zero 
of the nonlinear functions to a simple root. Such 
derivative-free algorithms can also be extended to find 
the numerical solution of systems of nonlinear
equations.
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CONCLUDING REMARKS

The design of iterative formulas for solving
nonlinear scalar equations is very important and is also 
an interesting task in mathematics. In other words, the 
analytic  methods  for  solving  such  equations  are 
almost  non-existent  and  therefore, it is only possible 
to obtain approximate solutions by relying on numerical 
methods based on iterative procedures. Hence in this 
contribution, some accurate and efficient without
memory sixth-order derivative-free algorithms for
solving single variable nonlinear equations have
developed  and  their  advantages  with respect  to  the 
other existed well-known methods are illustrated by 
numerical examples. 

The algorithms consist of four function evaluations 
per iteration and therefore their efficiency index is
1.565, which is greater than a lot of existing derivative-
free methods'. Numerical results are in concordance
with the theory developed in this paper as well. Further 
development to attain derivative-free methods of order 
12 can be considered as future studies in this field of 
study by taking into account (9) and (17).
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