Semi Generalized Local Functions in Ideal Generalized Topological Spaces

¹Rehman Jehangir and ²M. Khan

¹Department of Basic Sciences, Riphah International University, Hujj Complex I-14 Islamabad, Pakistan ²Department of Mathematics, COMSATS Institute of Information Technology, Park Road, Islamabad, Pakistan

Abstract: In this paper we define semi generalized local function $A_{\mu}(I,\mu)$ by using μ -semi-open sets in an ideal generalized topological spaces (X,μ,I) . Some properties and characterizations of semi generalized local functions are explored.

Key words: Ideal . ideal generalized topology . μ -semi-open set . semi-generalized open set . semi-generalized local function . generalized semi compatible space . semi-lindeloff space

INTRODUCTION

A. Császár initiated the study of Generalized Topology as a generalization of topology. His fundamental concepts have been studied by many topologists in the recent years. The notion of ideal topological spaces was first introduced by Kuratowski [5]. In this paper we introduce μ -semi-generalized open sets and infer some results according to this definition. We will define semi generalized local function and explore its associated properties. The notion of semi compatibility of a generalized topology μ with an ideal I is studied. It is given in [4] that for an ideal I_f(resp, I_c) of finite (resp. countable) subsets of $X, \tau \sim I_f$ (resp $\tau \sim I_c$) if and only if (X,τ) is a hereditary compact (resp. hereditary Lindeloff). We define and characterize generalized semi compatibility in ideal generalized topological space.

PRELIMINARY

A generalized topology μ [1], on X is nonempty collection of subsets of X which satisfies the following two axioms: $\phi \in \mu$ and μ is closed under arbitrary union. The elements of μ are called μ -open and their compliment is called μ -closed. The pair (X, μ) is called a generalized topological space. And sometimes it is represented as GTS on X. Let (X, μ) be a generalized topological space and $A \subseteq X$, then interior and the closure of A are represented as $\mathrm{Int}_{\mu}(A)$ and $\mathrm{C}_{\mu}(A)$. The ideals on non empty set X is a non-empty collection of subsets of X which satisfy the following properties:

- (i) $A \in I$ and $B \subset A \Rightarrow B \in I$
- (ii) $A \in I$ and $B \in I \Rightarrow A \cup B \in I$.

In 2005, Császár [1] defined local function in ideal generalized topological spaces and constructed a new generalized topology μ^* . Along with that he studied its several properties.

Definition 1.1: [1] Let A be a subsets of X, the set $A^* \subset X$ is defined by $x \in A^*$ if and only if $x \in M \in \mu$ implies that $M \cap A \in I$. If $M_{\mu} = \bigcup \{M \colon M \in \mu\}$ and $x \in M_{\mu}$ then by definition $x \in A^*$. If there is no ambiguity then we write A^* in place of $A^*(I,\mu)$. And $x \notin A^*$ implies that $M \cap A \in I$.

Definition 1.2: Let (X, μ) be a generalized topological space. Then $A \subseteq X$ is said to be μ -semi-open set if there exists a μ -open set $M \in \mu$, such that $M \subseteq A \subseteq cl(M)$. The compliment of μ -semi-open set is said to be μ -semi-closed. The collection of all μ -semi-open (resp. μ -semi-closed) sets in X containing x is denoted by $SO_{\mu}(X, x)$ (resp. $SC_{\mu}(X,x)$). The μ -semi-closure of A in (X, μ) is defined by the intersection of all μ -semi-closed sets containing A and is denoted by $Scl_{\mu}(A)$.

SEMI GENERALIZED LOCAL FUNCTION

Let (X,μ,I) be an ideal generalized topological space and $A \subseteq X$, then we define a set $A_{\mu}(I,\mu) \subset X$ by $x \in A_{\mu}(I,\mu)$ if and only if $x \in M \in SO_{\mu}(X,x)$ implies that $M \cap A \not\in I$. If $M_{\mu} = \bigcup \{M \colon M \in SO_{\mu}(X)\}$ and $x \not\in M_{\mu}$ then by definition $x \in A_{\mu}$. And $x \not\in A_{\mu}$, implies that $M \cap A \in I$, when there is no ambiguity, A_{μ} is written in place of $A_{\mu}(I,\mu)$.

Remarks. 2.1

(1) $A_{\mu}(I,\mu) \subseteq A^*(I,\mu)$ for every subset A of X.

- (2) $A_{\mu}(I,\mu) = A^*(I,\mu) \text{ if } SO_{\mu}(X,\mu) = \mu.$
- (3) The simplest ideals are $\{\phi\}$ and $P(X) = \{A : A \subseteq X\}$ we observe that $A_{\mu}(\{\phi\}) = Scl_{\mu}(A) \neq cl_{\mu}(A)$ and $A^*(P(X)) = \varphi$ gives $A_{\mu}(P(X)) = \varphi$ for every $A \subseteq X$.
- (4) If $A \in I$ then $A_{\mu} = \phi$.
- (5) Neither $A \subseteq A_u$ nor $A_u \subseteq A$ in general.

Proof

- (1) Let $x \in A_{\mu}(I,\mu)$, then $A \cap U \notin I$ for every $U \in SO_{\mu}(X,x)$. Since every μ -open set is μ -semi-open, therefore $x \in A^*(I,\mu)$. Converse is not true in general. This is shown in Example 2.2.
- (2) Proof is trivial.
- (3) It is quite obvious.
- (4) If $A \in I$, then by the definition of semi generalized local function, It's clear that $A_u = \phi$.
- (5) By example 2.2, $A \not\subset A_{\mu}$ and by example 2.3 $(A_{\mu}) * \not\subset A$.

Example 2.2: Let $X = \{a, b, c, d\}$ and

$$\mu = \{\phi, \{a\}, \{a,b\}\}\$$
 and $I = \{\phi, \{a\}, \{b\}, \{a,b\}\}\$

and Let $A = \{a,d\}$ then

$$SO_{\mu}(X) = \begin{cases} \phi, \{a\}, \{a,b\}, \{a,c\}, \{a,d\}, \\ \{a,b,c\}, \{a,b,d\}, \{a,c,d\}, X \end{cases}$$

 $A_{\mu} = \{d\}$ which shows that $A \not\subset A_{\mu}$.

Example 2.3: Similarly in the above example if we substitute the value for $I = \{\phi\}$ then for $A = \{a,d\}$ then $A_u = \{a,b,c,d\}$. This shows that $A_u \not\subset A$.

Theorem 2.4: Let be an ideal generalized topological space and A, B are subsets of X. Then, for semi generalized local functions in ideal generalized topology (X, μ, I) , the following properties hold:

- (1) If $A \subset B \subset X \Rightarrow A_{\mu} \subset B_{\mu}$.
- $(2) \quad (A \cup B)_{u} = A_{u} \cup B_{u}$
- (3) If $B \in I$, then $(A B)_{\mu} \subset A_{\mu} \subset (A \cup B)_{\mu}$, equality holds only if for every $x \in X$, then there exists $N \in SO_{\mu}(X,x)$.
- $(4) \quad A_{\mu\mu} \subset A_{\mu}.$
- (5) If $I \subseteq \vartheta \Rightarrow A_{\mu}(\vartheta, \mu) \subseteq A_{\mu}(I, \mu)$ where $\notin \vartheta$ is an ideal on X.
- (6) $A_{\mu} = Scl_{\mu}(A_{\mu}) \subset Scl_{\mu}(A)$ and A_{μ} is μ -semi-open set.
- (7) $A_u B_u = (A B)_u B_u \subset (A B)_u$.

Proof

- (1) Suppose that $A \subset B$ and $x \notin B_{\mu}$. There exists $U \in SO_{\mu}(X,x)$ such that $U \cap B \in I$. Since $A \subset B$, $U \cap A \in I$ and $x \notin A_{\mu}$ This proves that $A_{\mu} \subset B_{\mu}$.
- (2) First by (1) we can have, $A_{\mu} \cup B_{\mu} \subseteq (A \cup B)_{\mu}$.

Now suppose that $x \in (A \cup B)_{\mu}$ then for every $U \in SO_{\mu}(X,x)$ we can write that $(U \cap A) \cup (U \cap B) = U \cap (AUB) \notin I$. Therefore, $(U \cap A) \notin I$ or $(U \cap B) \notin I$, this implies that $x \in A_{\mu}$ or $x \in B_{\mu}$, that is $x \in A_{\mu} \cup B_{\mu}$. Therefore, we have $(A \cup B)_{\mu} \subseteq A_{\mu} \cup B_{\mu}$. Consequently, we obtain that $A_{\mu} \cup B_{\mu} = (A \cup B)_{\mu}$.

- (3) Result is quite obvious.
- $\begin{array}{llll} \text{(4)} & Let & x \in A_{\mu\mu}, & then & for & ever & U \in SO_{\mu}(X,x), \\ & U \cap A_{\mu} \neq \varphi & . & Now & let & y \in U \cap A_{\mu} & , & then \\ & & U \in SO_{\mu}(X,y) & and & y \in A \text{ and } A \cap U \not\in I. & Hence & for \\ & & U \cap A \not\in I \text{ and } x \in A_{\mu}. & This & shows & that & A_{\mu\mu} \subset A_{\mu} & . \end{array}$
- (5) $x \notin A_{\mu}(I)$, then there exists $U \in SO_{\mu}(X,x)$ such that $U \cap A \notin I$ or $U \cap A \in \vartheta$ because $\underline{\vdash} \vartheta$. This gives $x \notin A_{\mu}(\vartheta)$ because $(A_{\mu})_{*}(\vartheta) \subset (A_{\mu})_{*}(I)$.
- (6) We have $A_{\mu} \subseteq \operatorname{Scl}_{\mu}(A_{\mu})$ in general. Let $x \in \operatorname{Scl}_{\mu}(A_{\mu})$, then $U \cap A_{\mu} \neq \emptyset$ whenever $U \in SO_{\mu}(X,x)$. Therefore, there exists some $y \in A_{\mu} \cap U$ and $U \in SO_{\mu}(X,y)$.

Again, let $x \in Scl_{\mu}(A_{\mu}) = A_{\mu}$ implies $U \cap A \notin I$ fore very $U \in SO(X,x)$. This implies $U \cap A \neq \phi$ for every $U \in SO_{\mu}(X,x)$. Therefore, $x \in Scl_{\mu}(A_{\mu})$, this proves that $A_{\mu} = Scl_{\mu}(A_{\mu}) \subset Scl_{\mu}(A)$.

(7) Since $A = (A \setminus B) \cup (B \cap A)$, then by (2) $A_u = (A \setminus B)_u \cup (B \cap A)_u$, and hence

$$\begin{split} \boldsymbol{A}_{\mu} - \boldsymbol{B}_{\mu} &= \left[\left(\boldsymbol{A} \middle| \boldsymbol{B} \right)_{\mu} \cup \left(\boldsymbol{B} \cap \boldsymbol{A} \right)_{\mu} \right] - \boldsymbol{B}_{\mu} \\ &= \left[\left(\boldsymbol{A} - \boldsymbol{B} \right)_{\mu} - \boldsymbol{B}_{\mu} \right] \cup \left[\left(\boldsymbol{B} \cap \boldsymbol{A} \right)_{\mu} - \boldsymbol{B}_{\mu} \right] \\ &= \left[\left(\boldsymbol{A} \middle| \boldsymbol{B} \right)_{\mu} \middle| \left(\boldsymbol{B} \right)_{\mu} \right] \cup \phi \subset \left(\boldsymbol{A} \middle| \boldsymbol{B} \right)_{\mu} \end{split}$$

GENERALIZED SEMI-COMPATIBLE TOPOLOGY WITH AN IDEAL

Definition 3.1: Let (X,μ,I) be an ideal generalized topological space. We say that the generalized topology μ is semi-compatible with the ideal I, denoted by $\mu \sim I$, if the following holds: for $A \subseteq X$, if for $x \in A$ there exists $U \in SO_{\mu}(X,x)$, such that $U \cap A \notin I$, then $A \in I$.

Definition 3.2: We say that (X,μ,I) is compatible with an ideal I if $A \subseteq X$ and for $x \in A$ there exist μ -open set U containing x such that $U \cap A \notin I$, then $A \notin I$.

Remark 3.2: A compatible generalized topological space μ is semi-compatible but the converse is not true in general.

Theorem 3.3: Let (X,μ,I) be an ideal generalized topological space, then the following are equivalent:

- (1) $\mu \sim I$.
- (2) If a subset A of X has a cover of μ -semi-open sets each of whose intersection with A is in I, then A is in I.
- (3) For every $A \subseteq X$, $A \cap A_{u} = \phi \rightarrow A \in I$.
- (4) For every $A \subseteq X$, $A \setminus A_{ii} \in I$.
- (5) For every $A \subseteq X$, if A contains non-empty subset B with $B \subseteq B_u$, then $A \in I$.

Proof:

- (1) to (2) is quite obvious from the definition of A_{μ} .
- (2) \Rightarrow (3) Let $A \subset X$ and $x \in A$, then $x \notin A_{\mu}$ and there exists $U \in SO_{\mu}(X,x)$, such that $U \cap A \notin I$, therefore we have $A \subset \cup \{U : x \in A\}$ and $U \in SO_{\mu}(X,x)$ and by (2) $A \in I$.
- (3) \Rightarrow (4) For any $A \subset X$, $A \setminus A_{\mu} \subset A$ and $A \setminus A_{\mu} \cap A \setminus A_{\mu\mu}$ $\subset A \setminus A_{\mu} \cap A_{\mu} = \emptyset$ By (3) $A / A_{\mu} \in I$.

 $(5)\Rightarrow(1)$ Let $A \subset X$ and assume that for every $x \in A$, there exists $U \in SO_{\mu}(X,x)$, such that $U \cap A \in I$. Then $A \cap A_{\mu}$, since $(A \setminus A_{\mu}) \cap (A \setminus A_{\mu\mu}) \subset (A \setminus A_{\mu}) \cap A_{\mu} = \emptyset$. A $A \setminus A_{\mu}$ contains no non-empty subset B with $B \subset B_{\mu} = \emptyset$. By (5), $A \setminus (A_n)_* \in I$ and we have

$$A = A \cap (X \setminus A_{u}) = A \setminus A_{u} \in I$$

Definition 3.5: (X, μ) is said to be semi-Lindeloff if every cover of X by μ -semi-open sets of X has a countable subcover. A space (X, μ) is said to be hereditary semi-Lindeloff property.

Definition 3.6: Let (X,μ,I) be an ideal generalized topology and X is a μ -open set then (X,μ) is said to be

 μ -semi-compact if every cover of X has a finite subcover.

Definition 3.7: Let (X,μ,I) be an ideal generalized topology and an ideal is called the σ -ideal [8] if it is countably additive, that is if $I_n \in I$ for each $n \in N$, then $U\{I_n : n \in N\} \in I$.

Theorem 3.8: Let (X, μ) be the hereditary semilindeloff space satisfying condition G [6] and I be a σ -ideal on X then $\mu \sim I$.

Proof: Let $A \subset X$ and assume that for every $x \in A$ there exists a $U \in SO_{\mu}(X,x)$, such that $U \cap A \in I$. This imply that $U \cap Int_{\mu}(A) \in I$. Now $\{U \cap Int_{\mu}(A) \in I.; x \in A\}$ is a cover of $Int_{\mu}(A)$ by μ -semi-open sets of $Int_{\mu}(A)$.

Let (X,μ) is hereditary μ -semi-Lindeloff, therefore this cover has a countable sub cover $\{U_{x(n)} \cap Int_{\mu}(A); x \in A, n \in N\}$. Since I is a σ -ideal, therefore $Int_{\mu}(A) = \bigcup \{U_{x(n)} \cap int(A); x \in A, n \in N\}$ is in I. If A is μ -open subset of X, then the proof is complete otherwise proposition $(1) \Rightarrow A/Int_{\mu}(A)$ is finite. For every $x \in A \setminus int(A)$, there exists $U \in SO_{\mu}(X,x)$, such that $U \cap A \in I$; hence $U \cap (A \setminus Int_{\mu}(A)) \in I$. By the finite additivity of I, we have $A/Int_{\mu}(A) = \bigcup \{U_x \cap (A \setminus Int_{\mu}(A))\}$ is in I. This proves that $A = Int_{\mu}(A) \cup (A \setminus Int_{\mu}(A)) \in I$.

REFERENCES

- Császár, Á., 2007. Modification of Generalized topologies via hereditary classes. Acta Math. Hungar, 115 (1-2): 29-36.
- Dorsett, C., 1990. Semi continuity and semi compactness. J. Inst. Math. Comput. Sci. Math. Ser., 3 (3): 317-323.
- Dorsett, C., 1981. Semi compactness, semi separation axioms and product spaces. Bull. Malays Math. Soc., 2 (4): 21-28.
- 4. Jankovic, D. and T.R. Hamlet, 1933. New topologies from old via ideals. Am. Math. Mon., 97 (4): 295-310.
- 5. Kuratowski, K., 1933. Topology I, Warszawa.
- Dlaska, K., N. Ergun and M. Ganster, 1994. On the topology generated by semi regular sets. Indian J. Pure and applied Math., 25 (11): 1163-1170.
- 7. Levine, N., 1963. Semi-open sets and semi-continuity in topological spaces. Am. Math. Mon., 70: 36-41.

- 8. Khan, M. and T. Noiri, 2010. Semi-local function I ideal topological spaces. Joutnal of Advanced Research in Pure Mathematics, Issn # 1943-2380, pp: 36-42.
- 9. Ganster, M., 1987. Some remarks on strongly compact spaces and semi compact spaces. Bull. Malays. Math. Soc., 2 (10): 67-70.
- 10. Cueva, M.C. and J. Dontchev, 1999. On spaces with hereditarily compact α-toplogies. Acta Math. Hungar, 82 (1-2): 121-129.
- 11. Njastad, O., 1966. Remarks on topologies defined by local properties. Avh. Norske Vid. Akad. Oslo, 1 (8): 1-16.