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Abstract: The main purpose of this article is to present an approximation method of for singular integro-
differential equations with Cauchy kernel in the most general form under the mixed conditions in terms of 
the second kind Chebyshev polynomials. This method transforms mixed singular integro-differential
equations with Cauchy kernel and the given conditions into matrix equation and using the zeroes of the 
second kind Chebyshev polynomials, the matrix equation turns a system of linear algebraic equation. The 
error analysis and convergence for the proposed method is also introduced. Finally, some numerical 
examples are presented.
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INTRODUCTION

The integral equations appear in many problems of 
physics and engineering. The singular integral equation 
considered to be of more interest than the other. Cauchy 
type  singular  integral equations [1, 2] was created 
early in the 20th century, which has undergone an 
intense growth during the last years. Integral equation 
containing singular kernel appears in studies involving 
airfoil [3], fracture mechanics [4] contact radiation and 
molecular conduction [5] and others [6-9]. Cauchy 
integral equations are usually difficult to solve
analytically and it is required to obtain approximate 
solutions. So many different methods have been
developed to obtain an approximate solution of a
Cauchy integral equation such as iteration method [10], 
Berstein polynomials method [11], Jacobi polynomials 
method [12], Cubic spline method [13], rational
functions method [14] and others. In recent years the 
Chebyshev polynomials have been use to find the
approximate solutions of linear differential equations, 
linear integro-differential-difference equations and Abel 
equations [15-20]. In this paper, we consider the
singular integro-differential equation with Cauchy
kernel
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with the mixed conditions
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and the solution is expressed in terms of the the second 
kind Chebyshev functions as follows:

N

N r r
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y (x) a U ( x ) , 0 i N
=

= ≤ ≤∑ (3)

where ai, i=0,1,...,N are the coefficients to be
determined [21]. Here Pk(x) and ƒ(x) are continous 
functions on [-1,1], k

kjc  and ckj are appropriate constants. 

In this paper, firstly, we remove the singularity,
secondly the solution is expanded in terms of
orthogonal polynomials. The solution of the problem
reduces to the solution of a linear systems of equations. 
Finally, we give a numerical application to test our
method.

PRELIMINARIES AND NOTATIONS

In  this  section, we  state  some  basic  results 
about polynomial approximations. These important
properties will enable us to solve the singular integro 
differential equations. Polynomials  are  the only
functions   that the  computer  can  evaluate exactly, so 
we make approximate functions R→R by polynomials. 
We consider real-valued functions on the compact 
interval [-1,1]:
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f : [ 1,1] R− →

and  we  denote  the  set  all real-valued polynomials on 
[-1,1] by P, that is

N
i

i
i 0

p , x [ 1,1],p(x) a x
=

∀ ∈Ρ ∀ ∈ − = ∑
and

N {p(x):deg(p(x)) N , N Z }+Ρ = ≤ ∈

The uniform norm (or maximum norm) is defined by 

x [ 1,1]
f max f(x)

∞ ∈ −
=

Definition 2.1: For a given continuous function
ƒ∈C[a,b], a best approximation polynomial of degree N 
is a polynomial *

N Np (f) P∈  such that

*
N Nf p (f) min{f p : p P }∞∞

− = − ∈

where the uniform norm is defined by 
x [ 1,1]

f max f(x)
∞ ∈ −
= .

Theorem 2.1: [20-22] Let ƒ∈C[a,b]. Then for any ε>0,
there exist a polynomial p for which 

f p
∞

− ≤ ε

The theorem states that any continuous function ƒ
can be approximated uniformly by polynomials, no
matter how badly behaved ƒ may be on [a,b]. For
phrasing; for any continuous function on [-1,1], ƒ, there 
exist a sequence of polynomial (pN)N∈N which
converges uniformly towards ƒ such that

NN
lim f p 0
→∞

− =

Theorem 2.2: [20-22] For any ƒ∈[-1,1] and N≥0 the 
best approximation polynomial p*

N(ƒ) exists and is 
unique.

Definition  2.2:  Given  a  integer  N≥1  a  grid  is  a
set   of   N+1  points  X  =  (xi)0≤i≤N  in  [-1,1]  such  that 
-1≤x0<x1<...<xN≤1. Then points (xi)0≤i≤N are called the 
nodes of the grid.

Theorem 2.3: [22-25] Given a function ƒ∈C[-1,1] and 
a grid of N+1 nodes X = (xi)0≤i≤N, there exist a unique 
polynomial X

NI ( f )  of degree N such that

X
N i iI ( f )(x) f (x ) ,0 i N= ≤ ≤

X
NI ( f )  is called the interpolant of ƒ through the grid X.

The interpolant X
NI ( f )  can be express in the

Lagrange form:

N
X X
N i i

i 0

I (f) f ( x ) (x)
=

= ∑ 

where X
i (x)  is the i-th Lagrange cardinal polynomial 

associated with the grid X:

N
X i
i
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−
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The Lagrange cardinal polynomials are such that 

X
i ij(x) , 0 i,j, N= δ ≤ ≤

The  best  approximation  polynomials *
Np (f ) is

also an interpolant of ƒ at N+1 nodes and the error in 
given by :

X *
N N Nf I (f) (1 (X)) f p (f)

∞ ∞
− ≤ + Λ −

where ΛN(X) is the Lebesque constant relative to the 
grid X

N
X

N ix [ 1,1]
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(X): max (x)
∈ −

=

Λ = ∑ 

The Lebesque constant contains all the information 
on the effects of the choice of X on X

Nf I ( f )
∞

− .

Theorem 2.4: [22, 24] For any choice of the grid X, 
there exist a constant C>0 such that

N
2

(X) ln(N 1) CΛ > + −
π

Corollary 2.1: Let ΛN(X) be Lebesque constant relative 
to the grid X, then ΛN(X)→∞ as n→∞.
In a similar way, by a uniform grid,

N 1

N
2

(X)~ as N
eNlnN

+

Λ →∞

This means that for any choice of type sampling of 
[-1,1], there exists a continuous function ƒ∈C[-1,1]
such that X

NI ( f )  does not convergence uniformly

towards ƒ. Let assume  that the function ƒ is sufficiently
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smooth to have derivatives at least up to order N+1, 
with ƒ(N+1) continuous i.e. ƒ∈CN+1[a,b].

Definition 2.3: The nodal polynomial associated with 
the  grid  is  the  unique  polynomial  of  degree (N+1) 
and leading coefficient 1 whose zeroes are the N+1 
nodes of X:

N
X
N 1 i

i 0

w (x) (x x )+
=

= −∏

Theorem 2.5: [22, 25] If ƒ∈CN+1[-1,1], then for any 
grid X of N+1 nodes and for any x∈[-1,1], the
interpolation error is 

(N 1)
X X
N N 1

f ( )f(x) I (f)(x) w (x)
(N 1)!

+

+
ς− =

+

where (x) [ 1,1]ς = ς ∈ −  and X
N 1w (x)+  nodal polynomial 

associated with the grid X.

Definition 2.4: The Chebyshev polynomials Un(x) are 
the second kind polynomial in x of degree n, defined by 

n
sin(n 1)

U (x) , x cos
sin
+ θ

= = θ
θ

If the range of the variable x is the interval [-1,1],
the range  the  corresponding  variables θ  can  be 
taken [0,π]. These polynomials have the following
properties [25]:

i) Un(x)  has  exactly  n  real  zeroes  on  the  interval 
[-1,1]. The m-th zero xn,m of Un(x) is located at

n,m
m

x cos
n 2
π

=
+

ii) Un(x) is orthogonal on [-1,1] with respect to the 

weight function 
1

2 2w(x) (1 x )= − .
iii) It is well known that the relation between the

powers xn and the second kind Chebyshev
polynomials Un(x) is 

n
2

n n
n 2 j

j 0

n n
x 2 U (x)

j j 1
−

−
=

    
= −    −    

∑ (4)

A  particularly  important  class of kernels,
especially in the contex of the study of Chebyshev 
polynomials  in  integral equations, comprises the
Hilbert kernel

1
K(x,t)

x t
=

−
(5)

in the neighbourhood of x = t. If [a,b] = [-1,1] then

w(t)
K(x,t)

t x
=

−
(6)

where w(t) is one of the weight function (1+t)α(1-t)β

with 1
,

2
α β = ± .

Theorem 2.6: [25] Let Wn(x) and Vn(x) are the third 
and fourth Chebyshev polynomials respectively, then

1

n n
1
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−
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∞
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+
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π − −

∑ ∫ (8)

Definition 2.5: The grid X = (xi)0≤i≤N such that the xi’s
are the (N+1) zeroes of the Chebyshev polynomial of 
degree (N+1) is called the Chebyshev-Gauss (CG) grid.

Theorem 2.7: [22, 23, 25] The polynomials of degree 
(N+1) and leading coefficient 1, the unique polynomial 
which has the smallest uniform norm on [-1,1] is the 
(n+1) th Chebyshev polynomial divided by 2N.

FUNDAMENTAL RELATIONS

Let us consider Eq. (1) and find the matrix forms of 
the equation. First we can convert the solution yN(x)
defined by a truncated second kind Chebyshev series 
(3) and its derivative (k)

Ny (t) to matrix forms

Ny (x) U(x)A,= (k) (k)
Ny (x) U (x)A,= k 0,1, , N=  (9)

Where,
0 1 NU(x) [ U ( x ) U ( x ) . . . U (x)]=

T
0 1 NA [a a ...a ]=

By using the expression (4), taking n = 0, 1, …, N 
we find the corresponding matrix relation as follows
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T T TX (x) EU (x)andX(x) U(x)E= = (10)

where, NX(t) [1 x x ]=   and for odd N,

0

1

2 2

N N
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 
 

           −− −                   






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

for even N,

0
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N N N
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      = −             



                       − −− − −                                     







    














Then, by taking into account (10) we obtained

T 1U(x) X(x)(E )−= (11)
and

(k) (k) T 1U (x) X (x)(E ) , k 0,1,...,N−= =

To obtain the matrix X(k)(t) in terms of the matrix 
X (t), we can use the following relation:

(1) TX (x) X(x)B=

(2) (1) T T 2X (x) X (x)B X(x)(B )= =


(k) (k) T T kX (x) X (x)B X(x)(B )= = (12)
where

0 0 0 0
1 0 0 0

B 0 2 0 0

0 0 0 N 0

 
 
 
 =
 
 
  







    

Consequently, by substituting the matrix forms
(11) and (12) into (10) we have the matrix relation

(k) T k T 1
Ny (x) X(x)(B ) (E ) A , k 0,1,...,N−= = (13)

Moreover, we know that [25]

n n n 1W (x) U (x) U (x),n 1,2,...−= + = (14)
and

0 0W (x) U (x)=

Therefore, we get the matrix relation between W(x) 
and U(x) 

TW(x) U(x)C=

Where

1 0 0 0
1 1 0 0

C 0 1 1 0

0 0 0 1

 
 
 
 =
 
 
  







    



The similar way in above procedure, the integral 
part (8), we obtained the matrix form,



World Appl. Sci. J., 13 (12): 2420-2427, 2011

2424

N

r r 0 1 N
r 0

a W (x) [W (x ) W (x ) W (x)]A
=

=∑ 

T 1 T=X(x)(E ) C A− (15)

Matrix representation of the conditions: Using the
relation (17), the matrix form of the conditions given by 
(2) can be written as

m 1 s
k T k T 1

kj kj k
k 0 j 0

c X(c )(B ) (E ) A [ ]
−

−

= =

= µ∑∑ (16)

where
0 1 N

kj kj kj kjX(c ) [c c c ]= 

METHOD OF SOLUTION

We are ready to construct the fundamental matrix 
equation corresponding to Eq. (1). For this purpose, 
first substituting the matrix relations (13)and (15) into 
Eq. (1) we obtain

m
T k T 1 T 1 T

k
k 0

P(x)X(x)(B ) (E ) X(x)(E ) C A f(x)− −

=

 − = 
 
∑ (17)

For computing the Chebyshev coefficient matrix A 
numerically, the zeroes of the second kind Chebyshev 
points defined by 

i 1
i

x cos( ) , i 1,2,...,N 1
N 2− = π = +
+

are putting above relation (17). We obtained 

m
T k T 1

k i 1 i 1
k 0 i 1

T 1 T
i 1

P ( x )X(x )(B ) (E )
A f (x )

X(x )(E ) C

−
− −

= −
−

−

 
  = 
 − 

∑ (18)

So, the fundamental matrix equation is gained

m
T k T 1 T 1 T

k
k 0

P X ( B ) (E ) X(E ) C A F− −

=

 − = 
 
∑ (19)

where

k 0

k 1

k k 2

k N

P(x) 0 0 0
0 P(x) 0 0

P 0 0 P(x) 0

0 0 0 P ( x )

 
 
 
 =
 
 
  







    



2 N
0 0 0

2 N
1 1 1

2 N
2 2 2

2 N
N N N

1 x x x
1 x x x

X 1 x x x

1 x x x

 
 
 
 =
 
 
 
 







    



,

0

1

2

N

f(x )
f ( x )

F f(x )

f(x )

 
 
 
 =
 
 
  



The fundamental matrix equation (19) for Eq.(1)
corresponds to a system of (N+1) algebraic equations 
for the (N+1) unknown coefficients a0, a1,...,aN. Briefly, 
we can write Eq.(19) as

                         WA = G or [W;G ] (20)
so that

pq

m
T k T 1 T 1 T

k
k 0

W [w ]

P X ( B ) ( E ) X(E ) C , p,q=0,1,...,N− −

=

=

= −∑
(21)

We can obtain the matrix form for the mixed
condit ions (2), by means of Eq.(21), briefly, as

                UiA = [λi]; or [Ui; λi] i=0,1,…,m-1 (22)

where

m 1
k k T 1

i kj j i0 i0 iN
k 0

U = c X(c)B (M ) [u  u  ... u ]
−

−

=

≡∑

To obtain the solution of Eq.(1) under the
conditions (2), by replacing the rows matrices (22) by 
the last m rows of the matrix (21) we have the required 
augmented matrix

00 01 0 N 0

10 11 1N 1

N m,0 N m,1 N m,N N m

00 0 1 0 N 0

10 11 1N 1

m 1 , 0 m 1, 1 m 1 , N m 1

w w . . . w ; g(x )
w w . . . w ; g(x )
... ... ... ; ...

w w . . . w ; g(x )
[W*;G*]= u u . . . u ;

u u . . . u ;
... ... ... ; ...

u u . . . u ;

− − − −

− − − −

 
 
 
 
 
 
 λ
 

λ 
 
 
 λ 

(23)

or the corresponding matrix equation

W*A = G*

If rank (W*)=rank [W*;G*]=N+1, then we can write 

A = (W*)-1G* (24)

Thus the coefficients an, n=0,1,...,N are uniquely 
determined by Eq. (24).
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Table 1: Error analysis of example 1 for the x value 

Present method
Exact ----------------------------------------

x solution N = 4 Ne = 4 N = 5 Ne = 5 N = 6 Ne = 6

-1.0 -0.33333 -0.39046 0.571E-1 -0.31275 0.205E-1 -0.32626 0.706E-2
-0.8 -0.35714 -0.38070 0.235E-1 -0.34818 0.895E-2 -0.35227 0.486E-2

-0.6 -0.38461 -0.39171 0.709E-2 -0.38083 0.377E-2 -0.38154 0.306E-2
-0.4 -0.41666 -0.41756 0.901E-3 -0.41515 0.151E-2 -0.41507 0.159E-2
-0.2 -0.45454 -0.45431 0.230E-3 -0.45412 0.415E-3 -0.45406 0.477E-3
0.0 -0.50000 -0.50000 0.100E-8 -0.50000 0.000E-0 -0.50000 0.100E-9
0.2 -0.55555 -0.55465 0.896E-3 -0.55488 0.669E-3 -0.55482 0.731E-3
0.4 -0.62500 -0.62032 0.467E-2 -0.62146 0.353E-2 -0.62128 0.371E-2
0.6 -0.71428 -0.70100 0.132E-1 -0.70365 0.106E-1 -0.70334 0.109E-1

0.8 -0.83333 -0.80272 0.306E-1 -0.80723 0.261E-1 -0.80679 0.265E-1
1.0 -1.00000 -0.93347 0.665E-1 -0.94055 0.599E-1 -0.93998 0.591E-1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3
Exact solution
N=4
N=5
N=6

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Ne=4
Ne=5
Ne=6

Fig. 1: Numerical solution and error function of example1 for various N

Error analysis and convergence: Since, ||UN+1||∞ =
N+2, we conclude that if we choose the grid nodes 
(xi)0≤i≤N to be zero the (N+1) zeroes of the Chebyshev 
polynomials UN+1, we have

X
N 1 N

N 2
w

2+

+
=

and this is the smallest possible value. In particular,
from Theorem 2.10, for any y∈CN+1[-1,1] we have

N 1
N N

N 2
y y f

2 (N 1)!
+

∞ ∞

+
− ≤

+

If y(N+1) is uniformly bounded, the convergence of 
the interpolation yN towards y when N→∞ is then 
extremly fast.

ILLUSTRATIVE EXAMPLE

In this section, several numerical examples are
given to illustrate the accuracy and effectiveness
properties of the method and all of them were
performed on the computer using a program written in 
Maple 9. The absolute errors in tables are the values of 
Ne = |y(x)-yN(x)| at selected points.

Example 5.1: Consider the following singuler integro-
differential equation with Cauchy kernel 

1
3

1

3 1 1
(x 2) y'' 2(x 2)y' y k(x,t)y(t)dt

x 2 −

−
+ + − + = −

− π ∫

with 1
y(0)

2
= − , 1

y'(0)
4

= −
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and its exact solution is 1
y(x)

x 2
=

−
. We obtained the 

approximate solution of the problem for N = 8, 9, 10 
which are tabulated and graphed. For numerical results 
Table 1. We display a plot of absolute difference exact 
and approximate solutions with error functions for
various N are shown in Fig. 1.

Example 5.2: Consider the following singuler integro-
differential equation with Cauchy kernel

1
2

1

3 1
xy'' (x 1)y' y 8x 4x k(x,t)y(t)dt

2 −

− − + = − − +
π ∫

with y(0) = 1, y′(0) = -1 and this equation has the exact 
solution y(x) = x2-x+1. For N = 5, we obtained exact 
solution.

CONCLUSION

A new method based on the truncated Chebyshev 
series of the second kind is developed to numerical 
solve  singular  integro-differential equations with
mixed conditions on Chebyshev-Gauss grid. Singular 
integro-differential equations and singular integral
equations are usually difficult to solve analytically. In 
many cases, it is required to obtained the approximate 
solution. For this propose, the present method can be 
proposed.In this paper, the second kind Chebyshev 
polynomial approach has been used for the approximate 
solution of singular integro-differential equations. For 
the suggested method, we show error analysis and 
converge. Thus  the  proposed  method  is  suggested as 
an  efficient.  Examples  with  the  satisfactory  results 
are  used  to  demonstrate  the  application  of  this 
method. Suggested approximations make this method 
very attractive and contributed to the good agreement 
between approximate and exact values in the numerical 
example.
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