
World Applied Sciences Journal 13 (11): 2271-2276, 2011
ISSN 1818-4952
© IDOSI Publications, 2011

Corresponding Author: A.S. Arife, Department of Mathematics, Faculty of Science, Qena, Egypt
2271

Numerical Solution of Hirota-Satsuma Couple Kdv and a Coupled MKdv Equation
by Means of Homotopy Analysis Method

1A.S.Arife, 2Solat Karimi Vanani and 3Ahmet Yildirim

1Department of Mathematics, Faculty of Science, Qena, Egypt
2Department of Mathematics, Zahedan Branch, Islamic Azad University, Zahedan, Iran

3Faculty of Science, Ege University Bornova/Izmir, Turkey

Abstract: In this paper, the numerical solution of systems of Hirota-Satsuma coupled Kdv and a coupled 
MKdv Equation by means of Homotopy Analysis Method (HAM) are presented. The HAM can extremely 
minimize the volume of computations with respect to traditional techniques and yields the analytical 
solution of the desired problem in the form of a rapidly convergent series with easily computable
components. To illustrate the ability and flexibility of the method some examples are provided. A 
comparison was also made between HAM and Adomian Decomposition Method (ADM). The results reveal 
that the method is very effective and simple.
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INTRODUCTION

Several methods have been suggested to solve 
partial differential equations. These methods include 
the Homotopy Perturbation Method (HPM) [1-3], ADM
[4-7] and Variational Iteration Method (VIM) [7-10].
The HAM [10-22] is one of a general analytic approach 
to get series solutions of various types of nonlinear 
equations ordinary differential equations, partial
differential equations, differential-integral equations,
differential-difference equation and coupled equations.
In 1992, Liao [15] proposed a new analytical
technique; namely, the Homotopy Analysis Method 
based on homotopy of topology. However, in Liao’s 
PhD dissertation [13], the method, which is a 
coupling of the traditional perturbation method
and homotopy in topology, this method has been 
successfully employed to solve many types of
problems in science and engineering [23]. HAM
contains an auxiliary parameter h which provides a 
simple way to adjust and control the convergent
region and the rate of convergence of the series solution
and deforms continuously to a simple problem. The
basic motivation of this work is using the HAM
for the coupled Kdv and Coupled Mkvd equation [24].
These solutions may well describe various phenomena 
in nature, such as vibrations, solitons and propagation 
with a finite speed [7]. Analytical solutions can also 
be obtained by different methods such as ADM [4-7]
and VIM [7, 8].

This paper investigates for the first time the
applicability and effectiveness of HAM on Hirota-
Satsuma couple Kdv and A coupled MKdv
equation. In this case, the auxiliary parameter h
was obtained by plot h-curve for the complex
general series of solutions. The result shows that
the ADM solution [23] is a special case of the
HAM solution.

THE MODEL WITH COUPLED SYSTEM

We consider the generalized Hirota-Satsuma
Coupled KdV system as follows [23]:

t xxx x x x x
1

u u 3uu 3vw 3 v w
2

= − + +

t xxx xv v 3uv= − + (2.1)

t xxx xw w 3uw= − +

In addition, a new-coupled MKdv equation is 
given as:

2
t xxx x xx x x x

1 3
u u 3u u v 3uv 3u v 3 u

2 2
= − + + + − λ

2
t xxx x x x x xv v 3vv 3u v 3u v 3 v= − − − + − λ (2.2)
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BASIC IDEA OF HAM

In HAM, the system can be written by

i iN[u(x ,t )] 0 , i 1,2,3= = (3.1)

where Ni is nonlinear operator, ui(x,t) is unknown 
function, x and t are the independent variables, ui,0(x,t)
is the initial condition, h≠0 is an auxiliary parameter
and Li is  an auxiliary linear operator. The parameter
q∈[0,1] is also the embedding parameter.
Let us construct a homotopy

i i,0 i i i(1 q)L[ (x,t;q) u (x,t)] q h N [ (x,t;q)]− φ − = φ (3.2)

so-called zero-order deformation equation.
When q = 0, the zero-order deformation equation
become

i i , 0(x,t;0) u (x,t)φ = (3.3)

and when q = 1, since hi≠0 the zero-order deformation 
of equation (3.2) is

i i(x,t;1) u (x, t )φ = (3.4)

where the embedding parameter q increases from 0 to 1.
Using Taylor's theorem, φi(x,t;1) can be expanded

in a power series of q as follows:

m
i i,0 i ,m

m 1

(x,t;q) u (x,t) u (x,t)q
∞

=

φ = +∑ (3.5)

where
m

i
i,m m

q 0

1 (x,t;q)
u (x,t)

m! q =

∂ φ
=

∂
(3.6)

If the initial condition guesses  ui,0(x,t), the auxiliary 
linear operator Li, the non-Zero auxiliary parameter 
h≠0 then the power series in equation (5) is converges 
at q = 1.
Therefore, we obtain:

i i,0 i , m
m 1

(x,t;q) u (x,t) u (x,t)
∞

=

φ = +∑ (3.7)

According to the definition of equation (3.6), the
governing equation of ui(x,t) can be derived from the 
zero-order deformation of equation (2). Using m times
differentiating with respective to q from the zero-order
deformation equation (2) and setting q=1, we have the 
so-called m-th-order deformation equation as:

( )i ,m m i,0 i i ,m i , m 1L[u (x,t) u (x,t)] q R u (x,t)−− χ =  (3.8)

where

m 1
i

i,m i,m 1 m 1
q 0

1 N[ (x,t;q)]
R (u (x,t))

(m 1)! q

−

− −
=

∂ φ
=

− ∂
(3.9)

and

m

1,m 1
0,m 1

>
χ =  ≤

(3.10)

APPLICATIONS

In this Section, the application of HAM for
solving coupled Kdv and Coupled MKdv are
considered. The HAM provides an analytical
solution in terms of an infinite power series. To 
show the efficiency of the present method for our
problems, the obtained results are compared with the 
ADM solutions.

Homotopy analysis method for coupled Kdv: Let us 
consider the given system (2.1). We start the
application of the HAM for solving this  system using
the initial conditions. Suppose that:

2 2 21
u(x,0) ( 8k ) 4k tanh kx

3
= β− +

2 2 4 2
20 2

2
2 2

4(3k c 2 k 4k c 4kv(x,0) tanh kx
3c c

− − β += + (4.1)

2
0 2w(x,0) c c tanh kx= +

are the initial approximations of u(x,t), ν(x,t) and
w(x,t). In continuation, we choose the auxiliary linear 
operators as :

i
i

(x,t;q)
L[ (x,t;q)] ,i 1,2,3

t
∂φ

φ = =
∂

(4.2)

with the following property

iL[C ] 0= (4.3)

where Ci are integral constants . Now, we define the 
nonlinear operators

3
1 1

1 1 13

3 2
2 3

1 (x,t;q) (x,t;q)N [ (x,t;q)] 3 (x,t;q)
2 x x

(x,t;q) (x,t;q)
3 (x,t;q) 3 (x,t;q)

x x

∂ φ ∂φφ = − φ
∂ ∂

∂φ ∂φ
+ φ + φ

∂ ∂
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Table 1:

X uADM uHAM νADM νHAM wADM wHAM

-50 0.346645 0.346659 0.0657245 0.065726 1.99978 1.99982
-40 0.346505 0.346613 0.0656678 0.0656793 1.9936 1.99865
-30 0.345487 0.346273 0.0653356 0.0653356 1.99797 1.99006
-20 0.338603 0.343845 0.0628901 0.0628901 1.91451 1.92892
-10 0.310816 0.329861 0.0489609 0.0489609 1.51483 1.58069
0 0.307183 0.306667 0.0257347 0.0257347 1.00996 1.00003
10 0.348992 0.329874 0.0489077 0.0489077 1.64217 1.57936
20 0.348992 0.343836 0.0629354 0.0629245 1.94185 1.92978
30 0.347044 0.346271 0.06534099 0.0653417 1.99192 1.99021
40 0.346719 0.346613 0.0656894 0.0656801 1.99890 1.99867
50 0.346674 0.346659 0.0657274 0.0657261 1.99985 1.99982

3
2 2

2 2 13

(x,t;q) (x,t;q)
N [ (x,t;q)] 3 (x,t;q)

x x
∂ φ ∂φ

φ = − + φ
∂ ∂

(4.4)

3
3 3

3 3 13

(x,t;q) (x,t;q)
N [ (x,t;q)] 3 (x,t;q)

x x
∂ φ ∂φ

φ = − + φ
∂ ∂

The corresponding HAM can be considered as:

( )
t

m m m 1 m m 10
u u R u (x,t) d− −= χ + τ∫ 

( )
t

m m m 1 m m 10
v v R v (x,t) d− −= χ + τ∫  (4.5)

( )
t

m m m 1 m m 10
w w R w (x,t) d− −= χ + τ∫ 

where

( )
m 1

m m 1 xxx m 1 k x m k 1
k 0

m 1 m 1

k x m k 1 m 1 k x k
k 0 k 0

1R u (x,t) u 3 u u
2

3 v w 3 u u

−

− − − −
=

− −

− − − −
= =

= ∂ − ∂

+ ∂ + ∂

∑

∑ ∑



( )
m 1

m m 1 xxx m 1 k x m k 1
k 0

R u (x,t) v 3 u v
−

− − − −
=

=−∂ + ∂∑ (4.6)

( )
m 1

m m 1 xxx m 1 k x m k 1
k 0

R u (x,t) w 3 u w
−

− − − −
=

=−∂ + ∂∑

We have solved this problem using HAM for
c0 = 1, c2 = 1, k =.1, β = 1, h = -1 and t = 1 and t = 1.
The obtained results have been compared with ADM.
The comparison is given in Table 1.

Homotopy analysis method for coupled MKdv:
Consider the system (2.1) and apply the HAM to 
solve this system. Suppose that the initial conditions 
are as:
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Fig. 1: The h-curve
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u(x,0) ktanhkx=

2 2 21
v(x,0) (4k ) 2k tanh kx

2
= + λ − (4.7)

are the initial approximations of u(x,t), v(x,t) and
w(x,t). In continuation, we choose the auxiliary linear 
operators as:

i
i

(x,t;q)
L[ (x,t;q)] ,i 1,2

t
∂φ

φ = =
∂

(4.8)

with the property
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Fig. 3: The approximate solution of u(x,t) and v(x,t)

iL[C] 0=

where Ci are integral constants. We define the nonlinear operators

3 2
21 1 2 1 1 1

1 1 1 1 23 2

1 (x,t;q) (x,t;q) 3 (x,t;q) (x,t;q) (x,t;q) (x, t;q)
N [ (x,t;q)] 3 (x,t;q) 3 (x,t;q) 3 (x,t;q) 3

2 x x 2 x x x x
∂ φ ∂φ ∂ φ ∂φ ∂φ ∂φ

φ = − φ + + φ + φ − λ
∂ ∂ ∂ ∂ ∂ ∂

3
22 2 2 1 1 2

2 2 2 13

(x,t;q) (x,t;q) (x,t;q) (x,t;q) (x,t;q) (x,t;q)
N [ (x,t;q)] 3 (x,t;q) 3 3 (x,t;q) 3

x x x x x x
∂ φ ∂φ ∂φ ∂φ ∂φ ∂φ

φ =− − φ − − φ + λ
∂ ∂ ∂ ∂ ∂ ∂

(4.9)

The corresponding HAM can be considered as:

( )
t

m m m 1 m m 10
u u R u (x,t) d− −= χ + τ∫ 

( )
t

m m m 1 m m 10
v v R v (x,t) d− −= χ + τ∫  (4.10)

where

( )
m 1 i m 1

m m 1 xxx m 1 x m i 1 j i j xx m 1 i x m i 1 x m 1
i 0 j 0 i 0

1 3R u (x,t) u 3 u u u v 3 v u 3 u
2 2

− −

− − − − − − − − −
= = =

= ∂ − ∂ + ∂ + ∂ − λ∂∑ ∑ ∑

( )
m 1 m 1 m 1 i

m m 1 xxx m 1 i x m i 1 x i x m i 1 x m i 1 j i j x m 1
i 0 i 0 i 0 j 0

R u (x,t) u 3 v v 3 v u 3 v u u 3 v
− − −

− − − − − − − − − −
= = = =

=−∂ − ∂ − ∂ ∂ − ∂ + λ∂∑ ∑ ∑ ∑ (4.11)



World Appl. Sci. J., 13 (11): 2271-2276, 2011

2275

Table 2:

x uADM uHAM vADM vHAM

-50 -0.0999220 -0.0999895 0.500004 0.500003
-40 -0.0999432 -0.0999228 0.500031 0.500019
-30 -0.0995747 -0.0994310 0.500229 0.500141
-20 -0.09568996 -0.0958693 0.501631 0.501021
-10 -0.0791645 -0.0729886 0.509388 0.506530
0 -0.00753516 -0.0075500 0.519889 0.519889
10 0.0791390 0.0793302 0.510342 0.510342
20 0.0968921 0.0969362 0.501224 0.501833
30 0.0994251 0.0995800 0.500170 0.500258
40 0.0999422 0.0999431 0.500023 0.500035
50 0.09999894 0.0999923 0.500003 0.500005

We have solved this problem using HAM for
c0 = 1, c2 = 1, k =.1, β = 1, h = -1 and t = 1. The 
obtained results have been compared with ADM. The 
comparison is given in Table 2.

CONCLUSION

We have described and demonstrated the
applicability of the HAM for solving system of Hirota-
Satsuma couple Kdv and a coupled MKdv Equation. 
Our method is a direct method, further it is simple and 
accurate. It is a practical method and can easily be 
implemented on computer to solve such problems. We 
have used the method with initial condition and have 
tabulated the numerical results as well as the ADM 
solutions. The tables show that the present method 
approximates the exact solution very well.
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