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Abstract: In this study, the optimal factor value estimates of the effect of Zirconium Oxychloride (ZrOCl2) 
with different concentrations of citric and formic acids on the flame-retardant properties of wool which is
assessed by thermal analysis, mass loss, the limiting oxygen index and vertical flame is considered and 
compared by two different optimization approaches, namely, with and without Robust Parameter Design
(RPD) using standard design matrix of Response Surface Methodology (RSM) in both cases to produce 
representative data. The results of optimization methods for the data of recent published research article
which was only based on general mean function show that the estimation of optimal factor values through 
new methodology of RPD approach is 86 percent more efficient.
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INTRODUCTION

The flammable nature of fibrous products is one of 
the major problems of the present time. Fibers from 
textiles causing many deaths and injuries and
considerable financial losses. Hazards from flammable 
fabrics have been recognized for many centuries and
repeated attempts have been made to control them [1].

One of the concern fibrous products is wool
which is a cutin fibrous protein and contains many 
kinds of cysteine, thiocarbamic acid and cross-
linking polypeptides with ahelical structure [2]. The
natural flame-resistant (FR) properties of wool are 
connected with its relatively high nitrogen content
(16%), high moisture content (10-14%) [3], high
ignition temperature (570-600°C) [4], low heat of
combustion 920.5kj/g), low flame temperature (680°C)
and a relatively high limiting oxygen index (LOI)
(25-28%) [5].

Wool, when heated alone, pyrolyses by a complex 
series of reactions which yield a number of products at 
increasing temperatures. Initially at 230-240°C, rupture 
of the helical structure occurs and the major ordered 
part of the wool protein undergoes a solid to liquid 
phase change [6]. At 250-295°C, an endothermic
reaction occurs associated with release of sulfur
compounds due to the breaking of the cystine disulfide 
bonds and simultaneous release of hydrogen sulfide [2]. 
Above 250°C, general pyrolytic decomposition occurs, 
including char-forming reaction and loss of other

volatiles. In the presence of air, formation of sulfur 
dioxide occurs between 270-320°C [6].  Cleavage of the 
cystine disulfide bond is seen to play a very important 
role in the thermal degradation and combustion of
keratin and it has been suggested that the oxidation of
cystine may be the initial exothermic reaction in the 
burning of wool [6]. 

In recent years, there have been a number of 
reports of treatments which enhance the natural flame-
resistant properties of wool [7-11]. Benisek when
working at the International Wool Secretariat
Laboratories has observed that mordanting treatments 
based on zirconium and titanium salts markedly
improve flame-resistance of wool [7-11]. They used 
vertical flame test and Differential Scanning
Calorimetric (DSC) and Thermogravimetry Analysis 
(TGA) to study the flame-resistance and thermal
behavior. Also, Scanning Election Microscopy (SEM)
and energy dispersive X-ray microanalysis (EDXS)
were used to study the morphology of treated wools [2]. 

Here, zirconium oxy chloride (ZrOCl2) along with 
two different organic acids (citric and formic acids) 
were used to produce a FR wool fabric  [2]. In this 
study, the optimal factor value estimates of the effect of 
Zirconium Oxychloride (ZrOCl2) with different
concentrations of citric and formic acids on the flame-
retardant properties of wool which is assessed by
thermal analysis, mass loss, the limiting oxygen index 
and vertical flame is considered and compared by two 
different optimization approaches, namely, with and
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without Robust Parameter Design (RPD). Since it is 
impractical and unnecessary to produce all data points 
of the different combinations of levels of four
considered factors, a standard design matrix, namely, 
Central Composite Design (CCD) of Response Surface
Methodology (RSM) was used in both cases to produce 
representative data. This design of experiment, not only 
produces effective data, but also provides us an
opportunity of modeling the whole experimental space.

MATERIALS AND METHODS

Materials: Base upon recent published research article 
of Forouharshad et al. [2], the wool fabric with plain 
woven structure from 48/2 Nm yarns was supplied by 
Iran Merino. The fabric was scoured with 0.5%
nonionic detergent at 50 for 30 min (L: R¼40: 1) and 
then washed with tap water and dried at room
temperature. The zirconium oxychloride (35%ZrO2)
used in that study was supplied by Shanghai Yancui Co, 
China. Formic acid and citric acid were obtained from 
Merck, Germany. Then formic acid (HCOOH) and 
citric acid (C6H8O7) were mixed with ZrOCl2
according to the CCD in Table 2, after which water was 
added until the solution achieved a 20 : 1 ratio of liquor 
to wool. Formic acid was added to each of the above 
flame retardants in order to maintain a pH of 3 during 
the exhaustion procedure. Mordanting of samples was 
started at 408C for 20 min and the temperature was 
raised for 30 min to the specified temperature in the 
CCD matrix (Table 2) and heated for 45 min. After 
being exhausted, the treated samples were rinsed with 
tap water and dried at room temperature. The criterion 
for flame retardation in that work was that the fabric
must pass the vertical strip-test prescribed by the United 
States Federal Aviation Administration (F.A.A test)
[10]. The ranges of these variables are shown in Table 1
and details of CCD for mordanting of wool with
ZrOCl2 are demonstrated in Table 2. According to 
preparation and test procedure explained in [2], the 
values of Char Length (CL) which its minimization is 
desired are obtained (Table 2).

Methods : Given the data from a crossed array, there 
are a number of potential approaches to directly
modeling the mean and variance as a function of the 
control factors. A general approach is to assume that the 
underlying functional forms for the mean and variance
models can be expressed parametrically. Assuming a d
point design with ni replicates at each location (i = 1, 2, 
…, d), the point estimators of the process mean and 
variance, iy and 2

is , respectively, form the data for the 
dual response system. Since the purpose of this article 
is to demonstrate the utility of a hybrid approach

(combining a parametric and nonparametric approach to 
modeling) for robust design, we will consider an “off 
the shelf” model for the mean. An “off the shelf” model 
for the process mean is linear in the model parameters 
and can be written as:

Means model:

1/2 *
i i i iy =x + g (x ; )′ ′β γ ε (1)

where iX ′  and i
*X ′ are 1×k  and 1×l vectors of means 

model and variance model regressors, respectively,
expanded to model form, β and γ are k×1 and m×1
vectors of mean and variance model parameters,
respectively, g is the underlying variance function and
εi denotes the random error for the mean function. The 
εi are assumed to be uncorrelated with mean zero and 
variance of one. Note that the model terms for the ith

observation in the means model are denoted by iX ′

while the model terms for the variance model are
denoted by i

*X ′ . This allows for the fact that the
process mean and variance may not depend on the same 
set of regressors.

Similar to the modeling of the mean, various
modeling strategies have been utilized for estimating
the underlying variance function. Bartlett and Kendall 
[12] demonstrated that if the errors are normal about the 
mean model and if the design points are replicated, the 
variance can be modeled via a log-linear model with the 
d sample variances utilized for the responses. A great 
deal of work has also been done using generalized 
linear models for estimating the variance function.
Although not an exhaustive list, the reader is referred to 
Box and Meyer [13], Aitkin [14], Grego [15], and
Myers et al. [16, 17]. As mentioned previously, since 
the purpose of this manuscript is to demonstrate the 
utility of a hybrid approach to modeling, we choose an 
“off the shelf” approach to variance modeling. The log-
linear model proposed by Bartlett and Kendall [12] is a 
popular one [18, 19] and is written explicitly as:
Variance model:

2 * * *
i i i i iln(s ) g (X ) X= + η = γ + η (2)

where ηi denotes the model error term whose
expectation is assumed to be zero and whose variance is 
assumed constant across the d design points.

Assuming the model forms for the mean and
variance given in (1) and (2), the model parameters are 
estimated using the following estimated weighted least 
squares (EWLS) algorithm:
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Step 1: Fit the variance model, 

2 *
i i iln(s ) X= γ + η

via ordinary least squares (OLS), obtaining

(OLS) * * 1 * *ˆ (X X ) X y−′γ =

where y* is the d×1 vector of log transformed sample 
variances.

Step 2: Use 

2 * (OLS)
i i ˆˆ exp(X )′σ = γ

as the estimated variances to compute the d(d estimated 
variance–covariance matrix for the means model, 

2 2 2
1 2 d

ˆ ˆ ˆ ˆV diag( , ,..., )= σ σ σ

Step 3: Use 1V̂ − as the estimated weight matrix to fit
the means model, yielding 

(EWLS) 1 -1 1ˆ ˆ ˆ= (XV X) X V y− −′ ′β

where y  denotes the d × 1 vector of sample averages.
The algorithm above yields the following estimates 

of the process mean and variance functions:

Estimated process mean:

(EWLS) (EWLS)
i i

ˆE[y] =x′ β


(3)

Estimated process variance:

(OLS) * (OLS)
i i ˆVar[y ] =exp(x )′γ (4)

Once estimates of the mean and variance have been
calculated, the goal becomes finding the operating 
conditions for the control factors such that the mean is 
as close as possible to the target while maintaining 
minimum process variance.

Any control factor which influences the expression 
in (4) is known as a dispersion factor. Any control 
factor that does not in fluence the expression in (4) but 
does influence the expression in (3) is known as an 
adjustment factor. When both dispersion and
adjustment factors are present, the robust design
problem can be approached in a two-step fashion.
Specifically, levels of the dispersion factors are chosen 
so as to minimize the estimated process variance in (4)

and then the levels of the adjustment factors are chosen 
so as to bring the estimated process mean in (3) to a 
desired level. If only dispersion factors are present and 
these factors also influence the process mean, the
researcher is left with finding the levels of the control 
factors that yield a desirable trade-off between low 
variance and a deviation from the targeted mean. This is 
often accomplished via minimization of an objective 
function such as the squared error loss (SEL):

2 2SEL = E[y(x) - T ] = {E[y(x)] -T } +Var[y(x)] (5)

where T denotes the target value for the process mean. 
Minimization can be accomplished via non-linear
programming using a method such as the generalized 
reduce gradient or the Nelder–Mead simplex algorithm. 
The SEL approach is also useful when adjustment 
factors are present but are not strong enough to bring 
the mean to the targeted value. Note that the determined 
set of optimal operating conditions is highly dependent 
on quality estimation of both the mean and variance 
functions. Misspecification of the forms of either the 
mean or variance models can have serious implications 
in process optimization [20, 21].

Experimental design and analysis: One of the most 
efficient design, namely, central composite design
(CCD) with four input variables is used to produce
representative two data points for each test of the
design matrix in experimental space (Table 2). The
ranges of these four input variables, namely, ZrOCl2, 
foemic acid, citric acid and temperature are given in 
Table 1.

The results of ANOVA analysis (Table 3) which 
uses functional mean only with fixed variances show 
that none of the main and interaction effects including 
model itself are significant. However, using non-
hierarchical stepwise method in this approach, the
analysis of variance (Table 4) not only shows the fitted 
model is appropriate but BD and C2 effects are
significant. In this way, the Ajd. R2 was improved from 
0.08 to 0.33 and model became significant.
Using the following second-order polynomial model, 

Table 1: Input variables and their ranges
Variable Lower limit Upper limit
Temperature (°C) 77.00 95.00
Zirconium oxychloride (ZrOCl2) (%) 5.60 10.30
Citric acid (C6H8O7) (%) 6.30 12.80
Formic acid (HCOOH) (%) 5.65 10.35
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Table 2: Design matrix and data points
Run number A: Zirconium oxychloride (%) B: Temperature (°C) C: Citric acid (%) D: Formic acid (%) Char length (cm)
1 10.30 95 12.8 5.6 1.20
2 10.30 77 12.8 10.3 1.65
3 4.00 86 9.5 8.0 1.70
4 5.60 95 12.8 10.3 2.50
5 10.30 95 6.3 5.6 1.00
6 7.95 101 9.5 8.0 1.00
7 5.60 95 6.3 10.3 1.65
8 11.90 86 9.5 8.0 1.35
9 7.95 86 15.0 8.0 1.30
10 5.60 77 12.8 5.6 1.70
11 7.95 86 9.5 8.0 1.75
12 7.95 86 9.5 8.0 0.95
13 7.95 86 9.5 8.0 0.95
14 7.95 86 4.1 8.0 2.10
15 5.60 77 6.3 5.6 1.95
16 7.95 86 9.5 8.0 0.90
17 7.95 71 9.5 8.0 1.30
18 7.95 86 9.5 11.9 1.20
19 10.30 77 6.3 10.3 1.25
20 7.95 86 9.5 4.0 1.60
21 7.95 86 9.5 8.0 0.85

Table 3: Analysis of variance
Source Sum of squares df Mean square F value p-value Prob>F
Model 2.80 14 0.20 1.12 0.4727 not signi
A-ZROCL2 0.061 1 0.061 0.34 0.5787
B-Temp 0.045 1 0.045 0.25 0.6329
C-CH3COOH 1.549E-003 1 1.549E-003 8.707E-003 0.9287
D-HCOOH 0.080 1 0.080 0.45 0.5274
AB 0.24 1 0.24 1.35 0.2898
AC 0.000 1 0.000 0.000 1.0000
AD 0.014 1 0.014 0.077 0.7910
BC 0.10 1 0.10 0.57 0.4791
BD 0.18 1 0.18 1.02 0.3525
CD 0.21 1 0.21 1.19 0.3176
A2 0.39 1 0.39 2.19 0.1896
B2 0.012 1 0.012 0.070 0.8006
C2 0.74 1 0.74 4.19 0.0867
D2 0.21 1 0.21 1.15 0.3240
Residual 1.07 6 0.18

Lack of fit 0.50 2 0.25 176 0.2832 Not Signi
Pure error 0.57 4 0.14

Cor total 3.86 20

Table 4: Analysis of variance with hierarchical stepwise method
Source Sum of squares df Mean square F value p-value Prob>F
Model 1.55 2 0.77 6.02 0.0099 Significant
BD 0.91 1 0.91 7.09 0.0159
C2 0.64 1 0.64 4.96 0.0390
Residual 2.31 18 0.13

Lack of fit 1.75 14 0.12 0.88 0.6215 Non significant
Pure error 0.57 4 0.14

Cor total 3.86 20
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Table 5: Estimated coefficients of the model
Factor Coefficient estimate df Standard error 95% Cl Low 95% Cl High VIF
Intercept 1.29 1 0.099 1.080 1.50
BD 0.34 1 0.130 0.071 0.60 1.00
C2 0.21 1 0.092 0.012 0.40 1.00

Table 6: Optimal factor values
ZrOCl2 Temprature CH3COOH HCOOH Char length
6.63 95.00 9.55 5.65 0.950393

Table 7: Statistical properties of predicted char length
Response Prediction SE mean 95% CL low 95% CL high SE pred 95% PL low 95% PL high
Char Length 0.950393 0.16 0.61 1.29 0.39 0.12 1.78

Table 8: Optimal factor values with PRD approach
ZrOCl2 Temprature CH3COOH HCOOH Char length
10.03 95.00 8.45 8.05 0.650393

Table 9: Statistical properties of predicted char length
Response Prediction SE Mean 95% CL low 95% CL high
Char Length 0.650393 0.07 0.51 0.79

Fig. 1: Response surfaces of char length

The estimated coefficients (Table 5) and the final 
equation in term of coded factors are as follow:

Char Length = + 1.29 + 0.34 BD + 0.21 C2

Below is one of the response surfaces as an example: 
The optimal factor values for minimization of Char 

Length and statistical properties of predicted value are 
given in Table 6 and 7, respectively.

However, the analysis results of using parametric 
model with PRD approach in which it uses the
mentioned functional mean along with variance model
gives optimal factor values and statistical properties of 
predicted value as in Table 8 and 9, respectively.

CONCLUTION

The analysis results of using parametric model with 
RPD approach in which it uses functional mean along
with a variance model show that the calculated mean 
square error (MSE) in this model (MSE = 0.07) is 
almost as half of the MSE of parametric model without 
RPD approach (MSE = 0.13). Also, the obtained Char
Length which its minimization is desired is reduced,
tremendously.
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