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Complex Solutions of the Regularized L.ong Wave Equation
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Abstract: In the present work, direct algebraic method with a computerized symbolic computation 1s used for

constructing the travelling wave solutions of regularized long wave equation with variable coefficients arising

i physics. The results emphasize the power of the methods used.
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INTRODUCTION

A search of directly seeking for exactly solutions of
nonlinear equations has been more interest m recent
yvears. One of the most exciting advances of nonlinear
science and theoretical physics has been a development
of methods to look for exact solutions for nonlinear partial
differential equations. among these methods we mainly
cite, such as the extended tanh-function methods [1-3],
F-expansion methods [4-6], famous Hirota’s method [7],
the Backlund and Darboux transformation [8-10], Pamnleve
expansions [11], homogeneous balance method [12],
Jacobi elliptic function [13-14], extended, variational
iteration methods [15-17]. The rest of this paper is
arranged as follows.In section 2,we describe the direct
algebraic method. In section 3, we apply this method for
regularized long wave equation. Finally, in section 4
conclusions are given.

Description of Direct Algebraic Method: For a given
partial differential equation

G (4, Uy Uy Uy ), (1
Our method mainly consists of four steps:

Step 1: We seek complex solutions of Eqg. (1) as the

following form:
u=1u(z) z = ik(x-cf) (2)

Where k and ¢ are real constants. Under the

transformation (2), Eq. (1) becomes an ordinary differential
equation

Niu, that' ,—iker',—k ", (3)

Where ,/ @ .
dz

Step 2: We assume that the solution of Eq. (3) is of the
form

u(z):ZaiFi(z), (4
=0

Where @ (i = 1, 2,...,.n) are real constants to be
determined later. F{(z) expresses the solution of the
auxiliary ordinary differential equation

F'(z)=b+F*(2), (5)

Eq. (5) admits the following solutions:

) —Jhtanh(v—&z),  b5<0
z)=
—J-beoth(v-bz),  B~0
Jotan(vbz), b0
F(z)=
~Jbootinbz), b0 (6)

Flo=- 1,

z

b=0

Integer » m (4) can be determmed by considering
homogeneous balance [3] between the nonlinear terms
and the highest derivatives of u(z) m Eq. (3).

Step 3: Substituting (4) mto (3) with (5), then the left hand
side of Eq. (3) is converted into a polynomial in F{(z),
equating each coefficient of the polynomial to zero yields
a set of algebraic equations for a, & , ¢,
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Step 4: Solving the algebraic equations obtained in Step
3 and substituting the results mto (4), then we obtain the
exact travelling wave solutions for Eq. (1).

Application for Regularized T.ong Wave Equation: Tn this

case we consider the regularized long wave equation as
(e, - s, =0 ,rs ER (7)

Permits us converting Eq. (7) into an ODE for 4 = u(z) and

z = t(x - cf) integrating we have

&)

(11— chu + riku® — sikPen" =0 JFLSER

Considering the homogeneous balance between #” and #°
m Eq. (7), we required that 2m =m+2%7m = 2, so we can
write (4) as

7o rikagz - ZSikscazbz +ik(l—clag=0

Ft Zrikagay — 251’k3calb +i#k(1-c)gy =0

F* ril(a,® + 2agay ) — 8sik cayh + ik(1 - c)ay = 0
F3 Zrikaja, — 231’k3ca1 =0

Fh. rikazz - 6sik3ca2 =0

Family 1: We have

_ 6k’cs
ay = ,
P

By substituting (9) into Eq. (8) and collecting all terms
with the same power of F together, the left-hand side of
Eq. (8) is converted into another polynomial in F equating
each coefficient of this polynomial to zero, yields a set of
simultaneous algebraic equations for a,, a,, a; 4 ¢ ¢ as
follows:

2 2
ay 6krcs, o = 0,i6\/b_f cs

By solving algebraic equations above we have

63/bk?
gy = SKes g, OBk
¥ ¥
For a, = 0 we have
1 —65k%c+ 6sk2c? + 482k %h 1
dg = 3 ,e== 3
12 k rsc Ask b1

And for a

=t 6\/5k205 we obtain

-
1 —6sk e+ 65k et + 1257k b
12 klrse
1+ 2isk b1

14 44520

4y

>

c

=0,

00:

12

1 —6skc+ 6sk>c? + 48576 % + 1

Klrse

o=

C4skh -1

>

Substituting (10) into (9) with (6), respectively, we obtain new exact complex solutions for Eq. (7) as follows:

H

a dsk?

Where b« 0 and & is an arbitrary real constant.

, -
_SKes| [ tanh(ﬁz‘k(x$+
L 1

92

1 —6sk2c+ 6sk2c? + 482k %
|+

E Erse

2T 12 2 22 2,4 2
u, = ok cs ﬁcoth(ﬁik(x¢ 21 M +i76sk c+ 6Sk2c + 485k b
a | dskb-1 "] 12 k rsc
Where b~ 0 and & 1s an arbitrary real constant.
2T 2 £l 22 2,4 2
s = 6k“cs Jl:tan(\/gik(x$ 1 r))} +i sk c+ 6sk“c” + 4857k c b
a | A5k -1 12 Erse
Where b~ 0 and & 1s an arbitrary real constant.
6kZes| 1 1 ekt 6skte? + 485M e
w0y = - bcot(\/gz‘k(x+7r))} +—
4 a | A5k -1 12 ke

Where b« 0 and & is an arbitrary real constant.
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ékzcs{ 1 TJrl_lH

Uy =—
hk(xt+t 2
Where 5=0 a [kt "
Family 2: Tn this case we have
o = 6kZes R 6Jgk2cs o = i76sk2c +6skter 11257k Mo - 1+ 2iSkzb'\/1_1
2 a Lo ¥ ¢ 12 Erse ’ 14 4452k%T

By using relations above we obtain new exact complex solutions for Eq. (7) as follows:

2

6k cs 1+ 2isk2bJ1_l
= —J=btanh(N—bik(xF—"" "1 ¢
hETy anh(V-bik (x5 e )

2 . 2
5 &bictes b tanh(y bik(xF L 2 OVIL 2’5 :/12_1 )
¥ 1+445k™b

N L —6skic+ 6skict +125°K b
12 Erse

Where b« 0 and & is an arbitrary real constant.

2

6kcs 14 2isk*bf11
- B coth(V Bik(er 2 VL,
Ty Coth(V=bik (e #

_6\bkcs L1+ 2isk*e1
FNOE b coth(f—bik(xF - =P8 OV
¥ ( ( 1+ 4457k p? )
+i —6ske + 65k +125° K b
12 Erse

Where b~ 0 and & 1s an arbitrary real constant.

2
6k cs 1+ 2isk®h11
= bt bik(x¥———+——t#

= a J_ an(J_z (x 1+ 4452k B? )

6Jl;kzcs 1+ 2isk2le_1
+—— b tan(«/bikixF ——— ¢
¥ Vb n(J_z (= 1+ 4457k h* )
N 1 —Gskic+ 65k S + 1257k
12 Ersc

Where b~ 0 and & 1s an arbitrary real constant.

2

6k cs 1+ 2isk2b\/ﬁ
= —alb cot(Wbik(x¥F—————+¢
hey Vb cot(bik(x 1+445%k* b 2
2 . 2
_'__6'\/1;.1{? CSJl;cot(Jl;ik(x¢l+2ISk2b:h?r
v 1+ 4457k b
L —6skic+6sk*c® +125% KA h
12 k*rse

D)

Where b~ 0 and & 1s an arbitrary real constant.
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Gkes 1
Uy =— ;
a |ik(xxt)

1-1+¢

Jri
2 F

Where b = 0.
CONCLUSION

In this work we have seen that three types of
travelling solutions of the regularized long wave equation
are successfully found out by using the direct algebraic
method. The results emphasize the power of the methods
used.
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