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Abstract: In this paper, we introduce a stochastic method for solving nonlinear Fredholm integral equations.
This kind of integral equations sometimes do not have straightforward and even unique solution. We employ
the branching process to solve such integral equations. Finally, a numerical example is provided to show that
the proposed is effective.
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INTRODUCTION

There are several approach to solve Fredholm integral
equations, however they have usually results acceptable
solutions in low dimensions. In probability theory, a
branching stochastic process is a Markov process that
models a population in which each individual in
generation n produces some random number of
individuals in n + 1, according to a fixed probability
distribution that does not vary from individual to
individual [1, 2]. Monte Carlo simulation is a classical tool
for solving high dimensional problems and has been
successfully used in different areas, for example see [3, 4].

We consider the following function

Where the domain G R  and the point x = (x ,x ,...,x ,) Now, we consider this model for double integraln
1 2 n

G is a point in Euclidean space and g(x), u(x) belong to equation of the second kind
Banach space, mark that g(x) has been supposed Dirac
delta due to the special usage of this function is sampling
from probability density function.

The equation (3) converges if

The general model of Fredholm integral equation is as
follow

Fig. 1: The first two iterations of random tree
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Monte Carlo Method for Solving Nonlinear Fredholm Definition  2.1   Full   random   tree   with L
Integral Equation: In this section we explain a relation generations  is  called  the  tree   where  the  dying out
between branching process and solving nonlinear integral of  particles  is  not  visible  from  zero  to (L–1)
equations. Consider the model of branching process that generation, but all the generated particles of the L
just has been divided in two branches. It begins with generation dies out.
point x , then x  generates the next generations x  and x . If  the process  has  been  stopped  at  the  initial0 0 00 01

All generated particles at the next moment behave as the point, then u (x ) = f(x ). Therefore the Monte Carlo
initial one. (Fig. 1) estimation is

Each particle begins generating with probability
p (x ) and die out with probability h(x )such that [2].m 0 0

p (x ) = 1 – h(x )m 0 0

This probability is initial probability of each step and
it has direct relation with dying out probability. Moreover,
for transition probability we have

p (x)  0m

p(x ,x ,...,x )  00 00 0m–1

variable ( ) is equal to function J(u ) i.e.,

Associated with the sample path x x x ... x ,0 1 2 n

Where n is a given integer number, the following Proof: See [5].
random variable defined by

Where

Using the model in Fig. 1, we consider the following
relations for solving Fredholm integral equations. We minimizes u(x) for any x G, where u(x) is solution of (4).
have

L
th

th

0 0 0

The full model of Monte Carlo estimator is

Theorem 2.1: The mathematical expectation of the random
g 0 L

Lemma 2.1: The transition density function

Proof: See [5].

Lemma 2.2: The initial frequency function

minimizes the functional .
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The minimum of this functional is equal to Compute die out probability p (x) = 1 – h(x ).

Proof: See [6].

Theorem 2.3: If l , then we have

Proof: See [5]. 
In the rest of this paper, for simplicity, suppose that

the kernel of Fredholm integral equation (3) is separable.
Also, we have supposed that all random trees have a
finite number of generations and the average value of the
particles which are born in any generation is finite.

Algorithm:

Generate random variable , , ,...,  from uniform1 2 k

distribution.

Calculate

Compute initial distribution

m 0

If the die out probability at initial point multiplied  by 

which is die out probability

Calculate optimal transition density function

Calculate

If | ( ) – u  (x)| then ( ) is the estimator ofg g
*

Monte Carlo else go to step 1.
Stop the algorithm when all points die out.

Numerical Experiments: In this section, show the
performance of the algorithm to obtain the unique
solution of the following integral equations. We run our
results on workstation, Intel(R) 1.83 GHz Dual CPU, 2.00
GB RAM using MATLAB software.

Table 1: Monte Carlo solution and relative error for three transition density functions using N=5000

Transition p (x) = 0.25 p (x) = 0.5 p (x) = x/42 2 2

density functions ------------------------------------------------ ------------------------------------------------ ------------------------------------------

x MC solution Relative error MC solution Relative error MC solution Relative error

0.0 0.9917 0.0083 0.9980 0.0020 1.00 0.00

0.1 1.0063 0.0063 1.0192 0.0192 0.9999 1.459e-4

0.2 0.9893 0.0107 1.0090 0.0090 1.0007 7.417e-4

0.3 1.0022 0.0022 1.0041 0.0041 1.0015 0.0015

0.4 1.0021 0.0021 0.9982 0.0018 1.0003 2.647e-4

0.5 1.0125 0.0125 1.0412 0.0412 0.9998 1.869e-4

0.6 1.0067 0.0067 1.0260 0.0260 0.9999 1.314e-4

0.7 1.0088 0.0088 1.0334 0.0334 1.0004 3.550e-4

0.8 1.0125 0.0125 1.0116 0.0116 1.0006 5.672e-4

0.9 1.0084 0.0084 1.0337 0.0337 1.0042 0.0042

1.0 1.0002 1.92e-4 1.0367 0.0367 0.9996 3.741e-4
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Fig. 2: Comparison of relative error for tree different equations. In this paper, we have proposed a branching
ransition density function. process based algorithm to solve Fredholm integral

Fig. 3: Comparison of relative error for different random World Appl. Sci. J., 8(6): 784-787.
trees. 4. Khan, M.E., S.F. Shaukat and S. Monk, 2009. Monte

We can see in Fig. 1 with the increasing number of World Appl. Sci. J., 6(12): 1691-1297.
random trees the Monte Carlo solution converges 5. Dimov I.T. and T.Gurov, 2000. Monte carlo algorithm
asymptotically to the exact one. Also, the experimental for solving integral equations with polynomial non
results for three transition density (0.25, 0.5, x/4), are linearity. Parallel inplemention, Pliska Studia
outlined in Table 2. Mathemaica Bulgaria, 13(1): 117-132.

Example: Consider the following integral equation,

Where D = [0,1]×[0,1], x  and  the  exact  solution  is
u(x) = 1.

We have simulated tree in Fig. 1 100, 1000, 5000 with
three transition density functions p (x) = 0.25, p (x) = 0.5,2 2

and p (x) = x/4. The best results are for 5000 and p (x) =2 2

x/4 as summarized in Table 1 and Fig 2.

CONCLUSIONS

As it knows, there are no efficient numerical
algorithms to solve seemed kind Fredholm integral

equations of the second kind. Finally, several numerical
examples are presented.
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