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Abstract: The similarity solutions of the effect of variable viscosity on unsteady mixed convection 
boundary layer flow over a vertical surface embedded in a porous medium are obtained by using HAMAD
formulations. Using HAMAD formulations the partial differential equations governing the flow and the 
heat transfer transform to ordinary differential equations. The fluid viscosity is assumed to vary as an 
inverse linear function of temperature T. Numerical results for the flow and heat transfer characteristics are 
obtained for various values of the mixed convection parameter ε, the unsteady parameter A and the variable
viscosity parameter θe. The numerical results for the steady case are calculated and compared with previous 
work.
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INTRODUCTION

The porous media heat transfer problems have
numerous thermal engineering applications such as
geothermal energy recovery, crude oil extraction,
thermal insulation, ground water pollution, oil
extraction, thermal energy storage, thermal insulations, 
and flow through filtering devices. Excellent reviews on 
this topic are provided in the literature by Nield and 
Bejan [1], Vafai [2], Ingham and Pop [3] and Vadasz 
[4]. Recently, Cheng and Lin [5] examined the melting 
effect on mixed convective heat transfer from a
permeable vertical flat plate embedded in a liquid-
saturated porous medium with aiding and opposing 
external flows. Rashad [6] studied the combined effect 
of MHD and thermal radiation on heat and mass
transfer by free convection over vertical flat plate
embedded in a porous medium. EL-Kabeir et al. [7]
applied the group theoretical method to solve the
problem of coupled heat and mass transfer by natural 
convection boundary layer flow for water-vapor around 
a permeable vertical cone embedded in a non uniform 
porous medium in the presence of magnetic field and 
thermal radiation effects.

There have been several studies of the effect of 
temperature-dependent viscosity on free/mixed
boundary layer flow. Ratcliff et al. [8] presented a 
numerical investigation of the effects of a strongly 
temperature-dependent viscosity on the radial structure, 
horizontal planform, and heat transfer characteristics of 

a thermally convecting, infinite Prandtl number,
Boussinesq fluid in a spherical shell. Basal and mixed-
mode heating are considered wherein viscosity varies 
with temperature. For basal heating, three convective 
regimes (mobile lid, sluggish lid, and stagnant lid) are 
observed in accord with theoretical and numerical
studies in cartesian geometry. For mixed-mode heating 
calculations mobile lid and sluggish lid regimes are
studied with changes in horizontal length scales.
Hossain et al. [9] studied the natural convection flow 
about a vertical cone and vertical wavy surfaces,
respectively, with the viscosity inversely proportional 
to the linear function of temperature. Kim and Choi 
[10] presented theoretical analysis of thermal instability 
driven by buoyancy forces under a time-dependent
temperature field of conduction is conducted in an 
initially quiescent, horizontal liquid layer. The
dependency of viscosity on temperature is considered 
and the propagation theory is employed for the stability 
analysis. Soh and Mureithi [11] computed exact and 
numerical solutions of a fully developed flow of a
generalized second-grade fluid, with power-law
temperature-dependent viscosity (µ=?-M), down an
inclined plane.

Analytical solutions are found for the case when 
M = m+1, m?1, m being a constant that models shear 
thinning (m<0) or shear thickening (m>0). Cheng [12]
examined the natural convection heat transfer from a 
horizontal isothermal cylinder of elliptic cross section 
in a Newtonian fluid with temperature-dependent
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viscosity. Results for the local Nusselt number and the local skin-friction coefficient presented as functions of 
eccentric angle for various values of viscosity-variation parameter, aspect ratio, and Prandtl number. The total heat 
transfer rate and the total skin friction of the elliptical cylinder with slender orientation are higher than those of the 
elliptical cylinder with blunt orientation. Recently, Pla et al. [13] analyzed convective solutions of a two dimensional 
fluid layer in which viscosity depends exponentially on temperature. This problem takes in features of mantle 
convection, since large viscosity variations are to be expected in the Earth’s interior. Ahmad et al. [14] studied the 
non-similar partial differential equations governing the problem of steady laminar mixed convection boundary layer 
flow past an isothermal horizontal circular cylinder placed in a viscous and incompressible fluid of temperature-
dependent viscosity. They found the flow and heat transfer characteristics are significantly influenced by 
viscosity/temperature parameter.

The effect of the time is very important to consider in physics and engineering problems, such as the boundary-
layer flow problems. Some recent papers of unsteady natural convection boundary-layer flow, Hassanien and 
Hamad [15] introduced new similarity solutions of flow and heat transfer of a micropolar fluid along a vertical plate 
in a thermally stratified medium. The general analysis is developed in them study for the case of ambient 
temperature that varies exponentially with time as well as uniform and varies with the position. Rodriguez et al. [16]
studied the transient cooling of a fluid initially at rest inside a vertical cylinder submitted to heat losses through the 
walls. D’Alessio and Perera [17] presented numerical and analytical solutions for the problem of unsteady free 
convection from an inclined elliptic cylinder. They obtained an analytical solution valid for small times and large 
Grashof numbers. Hmouda et al. [18] investigated a storage tank with an internal gas flue experimentally and 
numerically during its long-term cooling process.

In this paper, using HAMAD formulations for PDEs of 3-independent variable (see Hamad [19]) the governing 
partial differential equations with the boundary conditions reduce to ordinary differential equations with the 
appropriate boundary conditions, which are solved numerically using a finite deference method. Here we have 
focused our attention on the effect of the parameters govern the problem on the temperature and the heat transfer 
coefficient in unsteady case. The agreement between the present results and the previous is excellent.

MATHEMATICAL SIMULATION

Formulation of the problem: Consider a problem of unsteady laminar mixed convection boundary layer flow of a 
viscous and incompressible fluid of viscosity depends on temperature past a vertical semi-infinite flat plate placed in
a porous medium of constant ambient temperature T∞ (see Fig. 1.). Assume that the plate is maintained at the
uniform temperature Tw, where Tw>T∞ is for a heated plate and Tw<T∞ corresponds to a cooled plate. We also 
assume that the porous medium is filled with a fluid of variable viscosity. Consider the Cartesian coordinate system 

),( yx , the plate is located parallel to the free stream velocity U∞ oriented in the upward direction. Under these 
assumptions along with the Boussinesq and boundary layer approximations, then, the governing boundary layer
equations of this problem are 
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subject to the boundary conditions:
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where u  and v  are the velocity components along the x -and y -axes, respectively; t  is the time; T is the fluid

temperature, β and αm ?are the coefficients of thermal expansion and thermal diffusivity of the porous medium, 
respectively; g is to gravitational acceleration, ρ∞ is the ambient fluid density; K is the permeability of the porous 
medium and µ is the dynamic viscosity.

We assume that the dynamic viscosity µ has the following form (see Chin et al. [20]).
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where, γ and µ∞ are the thermal property of the fluid and the ambient fluid viscosity, respectively, which is a 
constant. Also, a and Te are constants, given by 
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By introducing the following non-dimensional variables:
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where,

mLUPe /∞=

is the Peclet number for a porous medium and θe is the viscosity/temperature parameter and its value is determined 
by the viscosity/temperature characteristics of the fluid and the operating temperature difference ∆T = Tw- T∞. It is 
worth mentioning that in the case when the temperature difference ∆T is positive, θe must physically be >1 for gases
and <1 for liquids. However, the opposite is true if ∆T is negative, where θe must physically be >1 for Liquids and 
<1 for gases since γ has the opposite sign in each of these cases and vice versa (Chin et al. 2007). Substituting (5)
and (7) into (1)-(3) we get the non-dimensional form:
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with the boundary conditions:
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where  is the constant mixed convection parameter which is given by
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Where,

)/()( mw LTTKgRa ∞−=

is the Rayleigh number for porous medium. It should be mentioned that ε>0 corresponds to a heated plate (assisting 
flow), ε<0 corresponds to a cooled plate (opposing flow) and ε=0 corresponds to the forced convection flow.

Further, we define the stream function ? ?according to
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Using (13), equations (8)-(10) become
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with the boundary conditions:
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METHOD OF SOLUTION

The invariant group: The procedure is initiated with the group G, a class of two-parameters a1 and a2, of the form
(see Moran and Gaggioli [21]).
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where C’s and K’s are real valued and at least differentiable in their real arguments a1 and a2.
Transformations of the derivatives are obtained from G via chain-rule operations as
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where S stands for ψ and θ.
Equations (14) and (15) is said to be invariantly transformed under (17) whenever
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when (15) holds (20)

Substitution from (17) and (18) into equation (19) for the independent variables, the functions and their 
derivatives yields
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The invariance of equation (21) implies R1 (a1, a2) = 0. This is satisfied by putting

0=K (23)

and

1, == CCC y (24)

Similarly from equations (20) we get
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Moreover, the boundary conditions (16) should be invariant under G, this implies 

.0=yK (26)

Finally, the group G which transforms invariantly, the differential Eqs. (14) and (15) and the boundary 
conditions (16) becomes
















=

+=

+=

=

+=

=

~
~

)(~

~
)(~

2

2

KC

KtCt

yCy

KxCx

G
y

ty

y

xy

(27)

HAMAD Formulations for Similarity Transformations: This section presents the relation between the original 
independent variables and the new similarity independent variable η. Also, the relations between the original 
independent/dependent variables and the new dependent variables which are functions of η. These relations come 
out directly from HAMAD formulations for PDEs of 3-independent variables (see Hamad [19]).
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FromEq. (26) and the definitions of 
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from which the suitable formulations (see Hamad [19]) which turn out the independent similarity variable, the 
stream function and the temperature are
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without lose of generality, we rewrite the similarity transformations (30) as following
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are arbitrary constants and A = A1 = 0 corresponds to the steady case.

Reductions to ordinary differential equations: The similarity transformations (31) maps Eqs. (14) and (15) to the
following ODEs
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COMPARISON

We notice that when the unsteady parameter A = 0, we have gotten the same similarity representation for the
steady case as in Chin et al. [20]. Also, we notice that the effect of variable viscosity can be neglected if θe is large 
(>>1), i.e., if either the constant a or (Tw-T∞) is small. If θe is small then either the fluid viscosity changes with the 
temperature or the temperature difference is high. It is also noticed that if θe→∞ equations (34) and (35) reduce to 
those for a constant viscosity case found by Markin [22] or Aly et al. [23] for an isothermal flat plate in the steady 
state.

RESULTS AND DISCUSSION

By using HAMAD formulations, a similarity transformations and similarity representation of the effect of 
variable viscosity on unsteady mixed convection boundary layer flow over a vertical surface embedded in a porous 
medium is obtained and it shown in equations (32)-(34). The similarity reduction corresponds to constant viscosity
can be easy obtain if we put (|∞e|→∞), also the similarity reduction corresponds to the steady case can be obtain by 
putting the parameters A and A1 (which appear in equations (31) and (33)) equal to zero. We have obtained the same 
result as in Chin et al. [20] in the steady case. Equations (32) and (33) with the boundary layer (34) have been solved 
numerically by using finite difference method (MATLAB package). Computations are carried out for various values 
of the viscosity/temperature parameter θe, the mixed convection parameter ? and the unsteady steady parameter A.
Both assisting (ε>0) and opposing (ε<0) flows are considered. 

Table 1 shows the values of heat transfer coefficient, )0('−  for various values of the mixed convection 

parameter ? ??the viscosity/temperature parameter e  and the unsteady parameter A. The result calculated for 

10,1= , ∞−−−= ,8,4,1,1,4,8e and 1,5.0,02 = . Also, in this table the comparisons of the present work 
with Chin et al. [20] results for unsteady case have been shown. It is found that the agreement between both results 
is excellent. Therefore, we believe that this comparison supports very well the validity of the present work. The 
results show that for each e , when ? ?or A increase the values of )0('−  increases, and the values of )0('−  in 
the unsteady case is greater than it in the steady case. Physically, this means the temperature of the plate is 
increased.

Figure 2 shows the temperature profiles for both the assisting and opposing flows 10,5,0,5,10 −−= , when 

1=e  and 1=A . It can be seen that decreasing from 0>  (assisting flow) to 0<  (opposing flow) leads to an 
increase of the thermal boundary layer thickness.?

Figures 3 displays the effect of the unsteady parameter on the temperature in the case of assisting flow 1=
the mixed convection parameter 1=e . It is noticed that the thermal boundary layer thickness corresponds to the 

steady case ( 0=A ) is greater than the thermal boundary layer thicknesses correspond to unsteady cases. Also, it is 
observed that for increasing the unsteady parameter, the thermal boundary layer decrease.

Figure 4 depicts the effect of the mixed convection parameter ? ?on the temperature for the constant viscosity 
( ∞→e ) when 0=A  (steady case) and 1=A  (unsteady case). The results are obtained for

1,0,2.1,3.1,5.1 −−−= ??For the steady case we have obtained the same results as in Chin et al. 2007. It is noticed 
that the unsteady thermal boundary layer thickness is smaller than the steady thermal boundary layer thickness in 
both assisting and opposing flows. Also, in both steady and unsteady cases, the thermal boundary layer thickness is 
decreased with increasing the mixed convection parameter ? .
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Figure 5 displays the variations of the heat transfer coefficient, )0('−  with ? , for various values of e

( 8,4,1,,1,4,8 ∞−−−=e ) in both steady ( 0=A ) and unsteady ( 1=A ) cases. The results for steady case is the 

same results in Chin et al. 2007. It is noticed that the value of heat transfer coefficient for each e  in the unsteady 
case is greater than it for steady case. This means the temperature difference between the plate and the fluid in 
unsteady case is higher than in steady case. The dash and solid bold two lines indicate the case of constant viscosity 
( ∞→e ) in comparison with other values of e corresponding to variable viscosity. Also, the behavior of the 

results show that for fixed values of e , values of )0('−  will increase as ? ?or A increases. Logically, fluid with 
higher velocity increases the heat transfer coefficient. This indicates that the temperature of the plate is increased, 
therefore, the temperature difference between the plate and the fluid will increase, which will lead to an increase of 

)0('− .

CONCLUTIONS

The similarity representation of the system of partial differential equations govern the effect of variable 
viscosity on unsteady mixed convection boundary layer flow over a vertical surface embedded in a porous medium
are obtained using HAMAD method (see HAMAD [19]). Numerical solutions of the ordinary differential equations 
are also obtained. For steady case, we have obtained the same similarity system as in Chin et al. [20], also we have 
compared our present results for steady case with those of Chin et al. [20], and the agreement between both results is 
excellent. From the numerical results, it is observed that the flow and thermal characteristics are significantly
influenced by the unsteady parameter. It is also noted that for fixed values of the temperature/ viscosity parameter, 
decreasing the mixed convection or the unsteady parameters lead to an increase of the thermal boundary layer 
thickness. Also, in the unsteady case the values of the heat transfer coefficient is greater than of it in steady case.

Table 1: Heat transfer coefficient, )0('θ−  for various values of ? ??? e and the unsteady parameter A (??=0  for steady 
case as by Chin et al. 2007)
? 1 10

? ?

? e

1 0.5 0
Chin et
al. 2007 1 0.5 0

Chin et
al. 2007

∞ 1.9832 1.4990 1.0189 1.0191 2.9319 2.5294 2.1446 2.1445
-8 1.9959 1.5138 1.0370 1.0370 3.0062 2.6078 2.2269 2.2268
-4 2.0084 1.5283 1.0547 1.0546 3.0784 2.6836 2.3062 2.3061
-1 2.0812 1.6121 1.1543 1.1542 3.4729 3.0946 2.7323 2.7323
1 1.8779 1.3741 0.8605 0.8603 2.2157 1.7489 1.2908 1.2908
4 1.9577 1.4691 0.9821 0.9821 2.7755 2.3633 1.9691 1.9689
8 1.9706 1.4842 1.0006 1.0008 2.8551 2.4480 2.0589 2.0587
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